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Using methods from the field of topological data
analysis, we investigate the self-assembly and
emergence of three-dimensional quasi-crystalline
structures in a single-component colloidal system.
Combining molecular dynamics and persistent
homology, we analyse the time evolution of
persistence diagrams and particular local structural
motifs. Our analysis reveals the formation and
dissipation of specific particle constellations in
these trajectories, and shows that the persistence
diagrams are sensitive to nucleation and convergence
to a final structure. Identification of local motifs
allows quantification of the similarities between the
final structures in a topological sense. This analysis
reveals a continuous variation with density between
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phases quantified by ‘topological proximity’, a
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there is a subtle, but direct connection between
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Our results demonstrate that topological data
analysis provides detailed insights into molecular
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1. Introduction
Since their initial reporting in 1984 by Shechtman et al. [1] and subsequent classification [2], quasi-
crystals have attracted enormous interest from materials scientists, mathematicians and chemists
alike. This interest culminated in the 2011 Nobel Prize in Chemistry, which was awarded to
Shechtman for his discovery. Although initially regarded as an unusual and unlikely state of
matter, experiments have shown quasi-crystalline phases emerging in a wide variety of systems
such as: alloys [3,4], binary crystals [5], dendritic liquids [6] and star polymers [7]. The list is
long and has been expanded dramatically in the last two decades. Simulations have established
quasi-crystalline structures in polymeric systems [8], packings of polyhedra [9] and foams [10].

In the paper at hand, we focus our attention on the study published by Engel et al. [11]
in which the authors describe the emergence of icosahedral quasi-crystals (IQC) from a one-
component system governed by a mathematical model mimicking the behaviour of intermetallic
interactions. The paper by Engel et al. focuses on deriving the phase diagram and characterizing
the emerging phases; and poses the question: ‘How do atoms arrange themselves rapidly and
with near structural perfection into a long-range ordered configuration without the guidance of a
unit cell?’. In this study, we expand this understanding by characterizing the local arrangements
that occur during the self-assembly of IQCs using time series of persistence diagrams—a new
diagnostic tool developed within topological data analysis.

Persistent homology (PH) [12–14] is a method from the emerging field of topological data
analysis, that quantifies the topological structure of a dataset over a range of length scales. To
provide a stable signature, PH determines the range of length scales for which each topological
feature (i.e. homology class) persists. For analysis of three-dimensional point clouds, PH is best
computed using the sequence of alpha-shape subsets of the Delaunay triangulation [15]. By
measuring and quantifying geometric properties using topology, PH signatures enable us to
characterize the self-assembly process in terms of a few distinct, frequently occurring ‘polyhedral
holes’, similar to Bernal’s seminal work on cavities in liquids [16].

PH has been used to analyse packings of granular material [17,18], the pore-space of reservoir
rocks [19], nanoporous materials such as zeolites for gas storage [20], and atomic configurations
in amorphous materials [21] to name just a few relevant applications in recent years. The method
excels at extracting information about geometric configurations that create topological features
such as handles and cavities in three-dimensional objects.

As PH orders the simplices in the Delaunay triangulation in an intuitive manner, the
method relies on analysis of many-point constellations. Hence, it classifies structure on a larger
scale than, for example, Steinhardt’s bond-orientational order parameter, but still in a local
manner unlike, for example, Fourier transformation. Also, as PH does not directly rely on
orientation (or a predefined neighbourhood), it is well suited for analysis of disordered and quasi-
crystalline states. The gathering, clustering, and visualization of this information is automated
and can be directly related to physical structures, whereas other analysis methods such as
Minkowski tensors [22] or Steinhardt’s bond-orientational order parameter [23,24] tend to focus
on characterizing particle-to-particle geometry (averaging the structure of nearest-neighbour
particles).

Our analysis reveals the defining constellations of the simulated structures, allowing us
to identify similarities and differences between phases in the simulated phase diagram and
to monitor the emergence and disappearance of key geometric constellations during the self-
assembly process. For the simulated quasi-crystalline states, we notably observe the emergence
of pentagons and related pentagonal bipyramids (in line with the initial descriptions of the
structure [11]). Using this information, we describe the convergence of our simulations from a
topological perspective. We employ the Wasserstein metric for persistence diagrams to explore the
relationships between the simulated structures and quantify the dimensionality of the topological
phase space.
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2. Methods and theory

(a) Simulations
Our molecular dynamics (MD) simulations are performed using HooMD-blue [25–27] and follow
the methodology outlined by Engel et al. closely [11]. We reiterate the essential points in this
section but redirect interested readers to the original paper for specifics. We simulate 4000
particles in a cubic box with periodic boundary conditions. The dimensions of the box are chosen
so that the number density of particles is 0.03 per unit volume. The system is integrated as a
Nose–Hoover NVT-ensemble using steps of �t = 0.005. Two particles separated by a distance, r,
are interacting via a so-called (simplified) oscillating pair potential (OPP) [11,28]:

V(r) = r−15 + r−3 cos(k(r − 1.25) − φ), (2.1)

where k and φ are chosen for each simulation run and determine the emerging structure.
Increasing k decreases the space between the minima, whereas increasing φ translates the minima
of the potential towards higher values of r. The potential is set to zero after the first three
oscillations. An example of an OPP is shown in electronic supplementary material, figure SI.7. We
begin our simulations at the reported melting temperatures, Tm, [11] and cool our simulation box
linearly to a temperature of 0.1 during the 108 simulation steps. We record the particle positions
every 1000 frames during each simulation trajectory. Finally, we translate the simulated structures
to put the centre-of-mass at the origin as seen in figure 2.

Engel et al. [11] consider the 10 configurations in electronic supplementary material, table SI.1,
and figure 1 a good set of representatives for the quasi-crystalline region in their phase diagram,
and we shall do the same. Furthermore, we simulate the crystal structures identified in their paper
as well as an additional four parameter sets resulting in disordered structures. The names describe
the density of the emerging structures: low-density quasi-crystals, named L1 to L3, intermediate-
density quasi-crystals, labelled I1 to I4, and high-density approximants, called H1 to H3. We label
the crystalline assemblies by their Pearson symbol [31] and the disordered states by D1 to D4.

Snapshots from the trajectory of the I2 phase are shown in the top row of figure 2. Short videos
of the self-assembly process along with examples of calculated diffraction patterns verifying the
existence of fivefold, threefold, and twofold axes in some of the simulated assemblies can be found
in the electronic supplementary material. Our motivation for grouping the D1 to D4 phases stems
from the fact that they do not exhibit long-range orientational order in their diffraction patterns.

(b) Persistent homology
Homology is a mathematical theory for characterizing the connectivity and holes in a shape. It
does this by representing the shape as a cell complex (a collection of simple building blocks
of dimensions 0, 1, 2, . . .) and defining abelian groups, Hk, that encode relationships between
k-dimensional cycles. When the cell complex sits in three-dimensional space, H0 represents the
connected components of the cell complex, H1 the loops and H2 the cavities.

Persistent homology extends this formalism from a single cell complex to a growing sequence
of nested cell complexes Cα called a filtration, indexed by a scalar parameter α that is typically
a length scale. The persistent homology module PHk is an algebraic object associated with
the filtration that encodes the k-dimensional homology at all α-values as well as the way the
smaller cell complexes sit inside the larger ones [32]. This information is summarized by k sets
of parameter intervals, PDk = {(bi, di)} a persistence diagram. A ‘birth’ endpoint bi is the smallest
α-value for which a particular k-cycle exists, and di is the value at which it ‘dies’, i.e. becomes the
boundary of a (k + 1)-dimensional piece of the cell complex. Some filtrations may have non-trivial
homology in the final cell complex; these cycles are called essential and are assigned a death value
of infinity.

In our setting, PD0 death values are determined by the minimal spanning tree of the Delaunay
triangulation of the point cloud; essentially making it a histogram of nearest-neighbour distances.
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Figure 1. Visualization of our simulations in the phase diagram spanned by k andφ. Green points are quasi-crystalline phases,
whereas blue points are crystalline and disordered points are red. The quasi-crystalline region found by Engel et al. is sketched
in dark green, the crystalline region in teal, and the disordered region in orange. A small quasi-crystalline patch is hidden under
the L1 disc. Where possible, the crystalline phases are denoted by their name in RCSR [29,30] below their Pearson symbols [31].
The figure is a reproduction of a figure by Engel et al. [11]. (Online version in colour.)

For the entries in PD1, the birth value is the length scale for which a loop is formed in the structure;
e.g. as in the second panel of figure 3. Accordingly, the death value is the length scale for which
the loop is ‘filled in’; as in the third panel of figure 3. Analogously, the births and deaths of the
features in our PD2s are the distances for which all faces of a cavity are formed and the cavity
‘filled in’.

Any given frame from our MD trajectories can be considered as a point cloud in Euclidean
three-space, E

3. There are a number of methods to build a filtration from this type of data. We
are interested in the local geometric configurations of points, so in this study we use the union
of balls of radius α growing around each data point, X(α) = ⋃

B(x, α). The homology of X(α) is
conveniently captured by the alpha-shape, a filtration of the Delaunay triangulation [33,34]. Two
examples of alpha-shape filtrations are shown in figures 3 and 4.

The persistent homology of an alpha-shape filtration is particularly sensitive to short-range
order. As seen in figure 2, locally ordered structures display just a few isolated features in their
persistence diagrams in contrast to those of the initial purely random point cloud. The isolated
PD features are associated with the repeated geometric motifs that generate cycles and cavities. A
frozen crystalline point cloud would exhibit a distribution of isolated, delta-function-like features
corresponding to the repeating geometric constellations. However, due to the soft nature of
the OPP in equation (2.1), we observe broader distributions of the topological features in our
persistence diagrams. Thus, the overall shape and distribution of points in a persistence diagram
reflects the degree of order in the point cloud. The more smeared and dispersed the locations of
the recorded topological features, the less geometric order the analysed structure possesses. A
similar interpretation of persistence diagrams of simulated glass-forming systems can be found
in the literature [21].

Analysing our alpha-shape filtration using persistent homology is effectively a physically
meaningful way to identify clusters of Delaunay triangles and tetrahedra. Each point in PD2
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corresponds to a ‘polyhedral hole’ as identified by Bernal in his pioneering work on atomic
arrangements in ideal liquids. The birth and death values associated with each feature measure
the largest enclosed sphere (di) and the largest sphere that can escape the cavity (bi). PD1 encodes
loop structures with birth value corresponding to the longest edge in the cycle when it is created,
and death value the largest circular opening.

(c) Wasserstein distance
The space of persistence diagrams, D, can be endowed with various metrics. One is the pth
Wasserstein distance [35,36] (also known as the Kantorovich–Rubinstein distance or the Earth
Mover’s distance) between two persistence diagrams, A and B:

lp (A,B) =
(

inf
γ (a,b)∈Γ (A,B)

∫
D×D

d (a, b)p dγ (a, b)
)1/p

, (2.2)

where Γ (A,B) is the set of all pairings of points between diagrams A and B, and d(a, b)
is the metric on the space; in our case ‖a − b‖∞. This metric allows us to quantify the
differences between the persistence diagrams. Here, we use the second Wasserstein distance,
p = 2. Algorithms for computing this distance between two PDs are available in Dionysus2 [37].

(d) Software
Our persistent homology calculations are performed using the Dionysus2 [37] framework for
Python as well as the Diode [38] extension for this, which in turn uses CGAL [39] libraries
to construct the underlying alpha shapes. We employ HomCloud [40] for deriving the optimal
cycle representations [41] of the features in our persistence diagrams. For the calculations using
multidimensional scaling, we employed the algorithm distributed with ski-kit-learn [42] for
Python. The plots and diagrams in this paper were made with Gnuplot [43], PyMol [44] and
Matplotlib [45].

3. Results and initial observations
The structures emerging in our simulations corroborate the phase diagram and conclusions
published by Engel et al. We consider time series of persistence diagrams from our simulation
trajectories. Videos of examples of these series can be found in the electronic supplementary
material, and example frames in figure 2. We discuss each dimension of homology in turn below.

For an alpha-shape filtration, all intervals in PD0 have b = 0. So, rather than plot the (b, d)
points, we display the one-dimensional histogram of d-values for each 0-cycle. The set of d-
values in PD0 is known to be the same (with a factor of 1/2) as the set of edge-lengths in the
Euclidean minimal spanning tree built from the point cloud [46], so it captures the near-neighbour
distances between points. We observe how shortly after nucleation, the d-values are distributed
in three peaks corresponding to the three wells in the OPP. However, as shown in figure 5, as the
self-assembly progresses, more and more particles have their nearest neighbour in the first (or
second) well. In fact, we note that before nucleation, our PD0s are already exhibiting these peaks,
implying that the point cloud has structure before nucleation; this is particularly clear from the
video sequences in the electronic supplementary material. In the time series, we see that once
the temperature is lowered sufficiently, the particles leap into the first well of the potential, and
the system nucleates.

With the first glance at the sequence of PD1 plots in figure 2, we observe how the births and
deaths of the topological features condense from the archetypal PD1 of a random point cloud into
four distinct types of feature as seen in figure 5. As discussed earlier, the concentration of (b, d)
points in a few locations implies the emergence of short-range order and of specific geometric
arrangements of points.
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Figure 5. Identification of features in the zeroth (a), first (b), and second (c) persistence diagrams of the final frame for the
I2 phase as shown in figure 2. Each characteristic feature in these diagrams can be attributed to the topology of a specific
geometric shape. The configurations illustrated in PD1 and PD2 are examples of volume-optimal cycles [41] calculated using
HomCloud [40]. We refer the reader to electronic supplementary material, tables SI.2, SI.4 and SI.5, for more details on the
individual constellations. (Online version in colour.)

The condensation of features in PD2 highlights the same properties of the self-assembling
structure. However, due to the type of cavities emerging, the classes of different features are
harder to separate. In the electronic supplementary material, tables SI.2–SI.6, we calculate birth
and death values of selected point constellations needed to explain the emergence of these
defining features (of our quasi-crystalline phases) in our PD1s and PD2s. As seen in the rightmost
entry of figure 5, our PD2s contain feature classes corresponding to regular and distorted
tetrahedra and pentagonal bipyramids.

Figure 5 demonstrates the assignment of particular geometric constellations to different
regions of our persistence diagrams. We draw the reader’s attention to the large pentagonal
bypyramids shown in figure 5c in cyan and in electronic supplementary material, table SI.4. For
the chosen values of k and φ in equation (2.1), the distance between the two tips of the bipyramid is
roughly that of the bottom of the third well in the OPP. Engel et al. report that including the third
well in the OPP (rather than shifting the potential to zero after two wells) in their simulations
stabilizes and aids the formation of quasi-crystals. We conjecture that the inclusion of the well
in the potential aids in stabilizing pentagonal bipyramids; thus supporting the formation of the
quasi-crystalline structure.

The persistence diagrams from all of the simulated phases can be found in the electronic
supplementary material, figures SI.2–SI.6. For the disordered phases, we observe how their PDs
are clearly more ‘diffuse’. The structures appear to have more small, regular and semi-regular
tetrahedral cavities than the other structures; in part due to the manner in which the first well in
the potential is promoted for these values of k and φ.

4. Analysis and discussion

(a) Evolution of PD1 features
Due to the well-separated nature of the features in our first persistence diagrams, we analyse
these further to characterize the self-assembly process (of the quasi-crystalline phases).

For each well in the simulated potential, we consider the width of that well to be the full width
at half of the maximum (the difference between the potential value at the bottom of the well
and at the peak of the subsequent hill). Based on these values, we define four windows for each
of our quasi-crystals in which we expect (1) small, equilateral triangles, (2) pentagons, (3) large,
equilateral triangles and (4) isoceles triangles to appear. The concept is sketched in electronic
supplementary material, table SI.7, and explained there in detail. Note that these windows and
their positioning differ slightly for the various simulation trajectories, as the simulated OPP is
different for each one.
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Time evolutions of the abundance of topological features inside the specified windows are
shown in figure 6. The full set of these time series is shown in electronic supplementary material,
figures SI.8 and SI.9.

The analysis shows how—after the initial nucleation, which happens after around 220 frames
in the three time series shown in figure 6—the abundance of features inside the specified windows
differs between the simulated structures. We see how for the four chosen motifs, the large,
equilateral triangles are unfavourable motifs which largely vanish during the self-assembly.
Note that this is not the case for the L1 and L2 phase, where large, equilateral triangles appear
thermodynamically competitive throughout the simulation.

As the structure is cooled, we note how different constellations become more and more
prevalent; notably, the amount of pentagonal constellations continues to increase throughout
the simulation for the samples shown in figure 6. We note that at the end of our simulation the
structure has yet to fully equilibrate, as the amount of various features have yet to converge as
we, for example, observe that the number of isoceles triangles is still increasing at the final frame
in our trajectory.

In the lower half of figure 6, we plot the amount of the various features inside the discussed
windows for the last frame in our trajectories as a means of distinguishing the different phases.
We see how larger triangular constellations are preferred for low-density structures, whereas the
smaller triangles are favourable for the simulated high-density structures.

Extending this methodology to the rest of the simulated structures, we correlate the abundance
of the different features to each other in electronic supplementary material, figure SI.10; and to the
estimated density of the structure in electronic supplementary material, figure SI.11. They show
a continuity of structural motifs between the clathrates (cF160, cP54 and hP47), the quasi-crystals
and the disordered phases. Furthermore, we see how the crystals cP4 and cP8 are quite distinct,
whereas the PD1s of hP2 and hP10 stand out as containing local structural motifs that match
higher-density, disordered structures.

(b) Convergence of Wasserstein distances
The quantity defined in equation (2.2) allows us to measure the distance between each frame
in an MD trajectory and the final frame of the same trajectory, yielding a visualization of the
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Figure 7. Examples of the evolution of theWasserstein distance between a given frame in a trajectory and the final frame in the
same trajectory. The full set of plots can be found in electronic supplementarymaterial, figures SI.12 to SI.16. As theWasserstein
distance expresses differences between our persistence diagrams, we can think of these plots as detailing the manner in which
our system converges in a topological sense. (Online version in colour.)

convergence that supports the feature counts studied in the previous section. Figure 7 shows
examples of these time series. The full set of plots showing the convergence of the Wasserstein
distances can be found in electronic supplementary material, figures SI.12–SI.16.

In most simulations, we observe two or three distinct stages in the Wasserstein distance time
series. The first one or two stages are either roughly constant or slowly decreasing and this is
followed by a noticeable drop at the same frame number in each dimension signalling nucleation.
The final stage is a roughly monotonic but noisy decrease towards zero for the remainder of
the trajectory. We observe a fundamentally different behaviour with respect to dimension in the
convergence of PD0, PD1 and PD2 distances to final frames. After nucleation, the PD0 distances
converge in a roughly linear fashion towards the final frame, while the PD1 and PD2 distances
have a more exponential-like asymptotic convergence.

Examining the time series for different types of structures shows that the cP8 phase has a
significantly different behaviour from the others, particularly for PD0 distances as it is the only
one with a significant increase in distance for intermediate frames (300–600) before the final
nucleation and convergence. The PD1 and PD2 distance time series also show roughly linear
decrease over this time interval, before the nucleation jump and final asymptotic convergence.
Note from electronic supplementary material, figure SI.4, that the final frame of the cP8 simulation
has almost all particles with their nearest neighbour in the second well of the OPP. Closer
inspection of the cP8 trajectory reveals that during the self-assembly process the number of
particles whose nearest neighbour is in the first well of the OPP increases during the intermediate
frames, leading to the increase in PD0 distances to the final frame.

In a few of the crystalline cases, e.g. cP4, we see two significant drops in the Wasserstein
distance plots. Closer inspection of the evolution of PD0 histograms for the cP4 trajectory shows
that this behaviour stems from the period in which a condensed droplet coexists with the gas. The
second transition is easily identified in the video in the electronic supplementary material. We see
that the nucleation jump tends to be significantly larger for the crystalline phase trajectories. Our
interpretation of this is that the crystalline phase nucleation is topologically closer to its final state,
whereas the disordered and quasi-crystalline phases equilibrate towards the final structure in a
slower fashion.
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(c) Topological proximity of phases
Extending the methodology from the previous section, we calculate Wasserstein distances
between different phases in an effort to quantify the topological relationship and similarity. These
distances are tabulated in electronic supplementary material, tables SI.8 to SI.10, between the final
frames in the trajectories.

We can visualize these relationships by employing multidimensional scale (MDS) [47] using
the Wasserstein distances between the structures as input. The algorithm assigns a position in
Euclidean space of prespecified dimension D to each of our simulated structures. These positions
are chosen so that they minimize the squared error between the distances in the embedding and
the provided distances. The two-dimensional embeddings are shown in figure 8. At first glance,
we observe how the geometry and topology of the cP8 structure is rather different from any of the
other structures for PD0, PD1 and PD2—as a consequence of the potential promoting the second
well to a degree that renders the first well largely irrelevant.

The leftmost plot of figure 8 can be interpreted as a map over the density of the structures.
Specifically, it displays the position and the occupancy of the wells in the OPP. We see how
the structures plotted topmost in the diagram are the ones with the most particles having their
nearest neighbour in the second potential well; cP8 being the extreme case of this. As we move
downward, we encounter the denser structures. Glancing only at the leftmost plot, one would be
tempted to label cP54 as an outlier as well. However, as we see in the PD1 and PD2 figure, the
structure cannot be classified as an outlier in terms of the higher order homology. In general, we
note that proximity in one of our diagrams does not necessarily preclude proximity in another.

The PD1 entry in figure 8 resonates well with our findings in figure 6. We see how the low-
density IQCs are considered somewhat different as they promote larger triangular constellations
rather than smaller. Similarly, cP54 and cI16—which are also low-density states—are found in the
same region of the plot. In the bottom left of the figure, we find a clustering of states with high
φ: hP2, hP10, and the disordered states. Finally, we note that cP4 is also found outside the main
clusters as the structure contains few to no large triangular constellations. The clathrates, cF160,
cP54 and hP47, can all be found somewhat centrally as the structures contain many pentagonal
constellations giving the PD1s similar to those of the quasi-crystalline phases.

In the bottom left, we find the disordered states and the hP2 and hP10 states; structures where
the majority of PD1 features are identified as small, triangular constellations. This is not the case
for the cP8 structure, as these triangular constellations are formed by the second well in the OPP.

Lastly, the PD2 entry allows us to ascertain the similarity of the cavity structure of the
simulated structures. We note how the aforementioned clathrates cF160, cP54 and hP47 can all
be found at the right of the diagram. Similarly, we note how the second persistence diagram
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of the hP10 structure exhibits unique clusters of features not found in other diagrams, which
consequently makes it a slight outlier.

The disordered states appear to cluster in the bottom of our diagram. Glancing at their PD2s,
we see that they are less condensed into sharp clusters of features than for the ordered states. In
this frame of mind, we note that the D3 appears to be the least ordered state, placing it near the
edge of the PD2 entry in figure 8. However, the clusterings of the simulated structures in figure 8
indicate that no single topological feature determines the crystallinity or disorder.

In electronic supplementary material, figure SI.17, we show the aforementioned error as
a function of the dimension of the embedding, D, to give an indication of the effective
dimensionality of the space we reduce using the MDS algorithm. We see that the two-dimensional
embeddings in figure 8 can account for roughly 95%, 85% and 80% of the observed variance
between the structures. To explain 95% of the variance, one would have to construct embeddings
in E

4 and E
6 for the PD1 and PD2 entry, respectively. This result is corroborated by a similar

analysis using principal component analysis (PCA) [48] of the homology rank functions [49] as
shown in electronic supplementary material, figure SI.18; though we note that the PCA produces
slightly lower dimensionalities. As shown in electronic supplementary material, figure SI.19, our
PCA shows that the first principal score correlates with densities of the simulated structures,
implying that density is a strong classifier for clustering.

5. Conclusions and outlook
We have demonstrated the application of persistent homology as an analysis tool for MD
trajectories and self-assembly in general and on quasi-crystalline, disordered, and crystalline
self-assemblies specifically and emphasize the generality of our approach. Persistent homology
proved to be a powerful tool for quantifying and representing the local motifs; the method
synergizes well with MD and is able to condense information and data from the technique in a
way that is not easily obtained via other methods. In an automated manner, persistent homology
identifies and clusters defining physical cavity and ring structures not captured in the Delaunay
triangulation; in turn facilitating comparison between different structures and their homology.

From our persistence diagrams, we identified defining constellations of points in the various
assemblies, which explains the observation by Engel et al. that the inclusion of the third well in
the OPP aids in stabilizing quasi-crystals, as the third well favours pentagonal bipyramids in the
structure.

Our approach highlights different aspects of the self-assembly behaviour for different phases.
We observed how some constellations are used as intermediate configurations before the systems
transition towards their final state, whereas others increase monotonically throughout the
process.

We employed the Wasserstein distance as a means of quantifying the convergence of our
simulations in a topological sense, and ultimately to relate the different simulations to each
other. Using this metric, we grouped structures into different classes based on their topological
proximity; demonstrating a concise and appealing way of relating larger numbers of simulated
structures to each other.

Future work could elucidate the effect of the inclusion of the higher-order wells in the
OPP, which is considered influential in the self-assembly process [11]. The relationship is not
detectable using the approach here; one would have to employ higher order kth nearest neighbour
diagrams for the analysis [50]. Based on our results here, we see this as a potential new way
to understand phason behaviour and ultimately describe why quasi-crystals form long-range
ordered configurations as posed in the introduction.

Our descriptions of the self-assembly of our phases relied on MD simulations of an
interaction potential. However, other approaches are available for this task; as an example
various implementation of field theories [51,52]. Persistent homology can also be applied to these
descriptions of matter. If the field is an electron density, say, then the sequences of geometric
shapes that form the filtration are built as upper level sets of electron density. This ensures that the
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highest-density regions, which correspond to centres of particles in an MD simulation, generate
PD0 births, while the lowest density regions, being cavities, appear as features in PD2. Algorithms
for computing persistent homology from level sets of a real-valued function evaluated on a
discretized grid are developed [53,54]. The resulting persistence diagrams can then be analysed
using the same techniques as described here.

Data accessibility. This article has no additional data.
Authors’ contributions. V.R., K.M. and J.J.K.K. conceived the idea of the study. M.C.P. planned and conducted
the research with aid from V.R., K.M. and J.J.K.K. All authors discussed the analysis and presentation of the
results. M.C.P. wrote the paper with aid from V.R., K.M. and J.J.K.K. All authors approved the final version.
Competing interests. The authors declare no competing interests.
Funding. The Villum Foundation is gratefully acknowledged by M.C.P. for financial support via grant nos.
17363 and 22833. V.R. is supported by the Australian Research Council as a Future Fellow on grant no.
FT140100604.
Acknowledgements. The authors thank the staff at the Raijin supercomputer at NCI Australia for providing the
computational resources needed for this project via the ANUMAS scheme. We thank the developers of the
used software packages and in particular Dmitriy Morozov for his help with and insights into Dionysus’
inner workings, and Kate Turner, Tomonari Dotera and Gerd Schröder-Türk for discussions on the manuscript
and data analysis. We thank Engel et al. for an excellent paper and for making the information and software
necessary to continue their work available.

References
1. Shechtman D, Blech I, Gratias D, Cahn JW. 1984 Metallic phase with long-range

orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953.
(doi:10.1103/PhysRevLett.53.1951)

2. Levine D, Steinhardt PJ. 1984 Quasicrystals: a new class of ordered structures. Phys. Rev. Lett.
53, 2477–2480. (doi:10.1103/PhysRevLett.53.2477)

3. Guryan CA, Goldman AI, Stephens PW, Hiraga K, Tsai AP, Inoue A, Masumoto T. 1989
Al-Cu-Ru: an icosahedral alloy without phason disorder. Phys. Rev. Lett. 62, 2409–2412.
(doi:10.1103/PhysRevLett.62.2409)

4. Bindi L, Steinhardt PJ, Yao N, Lu PJ. 2011 Icosahedrite, Al63Cu24Fe13, the first natural
quasicrystal. Am. Mineral. 96, 928–931. (doi:10.2138/am.2011.3758)

5. Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Chen J, Murray CB. 2009
Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–
967. (doi:10.1038/nature08439)

6. Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK. 2004 Supramolecular dendritic liquid
quasicrystals. Nature 428, 157–160. (doi:10.1038/nature02368)

7. Hayashida K, Dotera T, Takano A, Matsushita Y. 2007 Polymeric quasicrystal:
mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502.
(doi:10.1103/PhysRevLett.98.195502)

8. Dotera T, Gemma T. 2008 Dodecagonal quasicrystal in a polymeric alloy. Phil. Mag. 88, 2245–
2251. (doi:10.1080/14786430701861502)

9. Haji-Akbari A, Engel M, Keys AS, Zheng X, Petschek RG, Palffy-Muhoray P, Glotzer SC. 2009
Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462,
773–777. (doi:10.1038/nature08641)

10. Cox SJ, Graner F, Mosseri R, Sadoc JF. 2017 Quasicrystalline three-dimensional foams. J. Phys.
Condens. Matter 29, 114001. (doi:10.1088/1361-648X/aa5712)

11. Engel M, Damasceno PF, Phillips CL, Glotzer SC. 2015 Computational self-assembly of a one-
component icosahedral quasicrystal. Nat. Mater. 14, 109–116. (doi:10.1038/nmat4152)

12. Verri A, Uras C, Frosini P, Ferri M. 1993 On the use of size functions for shape analysis. Biol.
Cybern. 70, 99–107. (doi:10.1007/BF00200823)

13. Robins V. 1999 Towards computing homology from finite approximations. Topology Proc. 24,
503–532.

14. Edelsbrunner H, Letscher D, Zomorodian A. 2002 Topological persistence and simplification.
Discrete Comput. Geom. 28, 511–533. (doi:10.1007/s00454-002-2885-2)

15. Edelsbrunner H, Kirkpatrick DG, Seidel R. 1983 On the shape of a set of points in the plane.
IEEE Trans. Inf. Theory 29, 551–559. (doi:10.1109/TIT.1983.1056714)

http://dx.doi.org/doi:10.1103/PhysRevLett.53.1951
http://dx.doi.org/doi:10.1103/PhysRevLett.53.2477
http://dx.doi.org/doi:10.1103/PhysRevLett.62.2409
http://dx.doi.org/doi:10.2138/am.2011.3758
http://dx.doi.org/doi:10.1038/nature08439
http://dx.doi.org/doi:10.1038/nature02368
http://dx.doi.org/doi:10.1103/PhysRevLett.98.195502
http://dx.doi.org/doi:10.1080/14786430701861502
http://dx.doi.org/doi:10.1038/nature08641
http://dx.doi.org/doi:10.1088/1361-648X/aa5712
http://dx.doi.org/doi:10.1038/nmat4152
http://dx.doi.org/doi:10.1007/BF00200823
http://dx.doi.org/doi:10.1007/s00454-002-2885-2
http://dx.doi.org/doi:10.1109/TIT.1983.1056714


14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200170

...........................................................

16. Bernal JD. 1960 Geometry of the structure of monatomic liquids. Nature 185, 68–70.
(doi:10.1038/185068a0)

17. Kramár M, Goullet A, Kondic L, Mischaikow K. 2014 Evolution of force networks in dense
particulate media. Phys. Rev. E 90, 052203. (doi:10.1103/PhysRevE.90.052203)

18. Saadatfar M, Takeuchi H, Robins V, Francois N, Hiraoka Y. 2017 Pore configuration landscape
of granular crystallization. Nat. Commun. 8, 15082. (doi:10.1038/ncomms15082)

19. Robins V, Saadatfar M, Delgado-Friedrichs O, Sheppard AP. 2016 Percolating length scales
from topological persistence analysis of micro-CT images of porous materials. Water Resour.
Res. 52, 315–329. (doi:10.1002/2015WR017937)

20. Lee Y, Barthel SD, Dłotko P, Moosavi SM, Hess K, Smit B. 2017 Quantifying similarity of
pore-geometry in nanoporous materials. Nat. Commun. 8, 15396. (doi:10.1038/ncomms15396)

21. Hiraoka Y, Nakamura T, Hirata A, Escolar EG, Matsue K, Nishiura Y. 2016 Hierarchical
structures of amorphous solids characterized by persistent homology. Proc. Natl Acad. Sci.
USA 113, 7035–7040. (doi:10.1073/pnas.1520877113)

22. Kapfer SC, Mickel W, Mecke K, Schröder-Turk GE. 2012 Jammed spheres: Minkowski tensors
reveal onset of local crystallinity. Phys. Rev. E 85, 030301. (doi:10.1103/PhysRevE.85.030301)

23. Steinhardt PJ, Nelson DR, Ronchetti M. 1983 Bond-orientational order in liquids and glasses.
Phys. Rev. B 28, 784–805. (doi:10.1103/PhysRevB.28.784)

24. Mickel W, Kapfer SC, Schröder-Turk GE, Mecke K. 2013 Shortcomings of the bond
orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys.
138, 044501. (doi:10.1063/1.4774084)

25. Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, Glotzer SC. 2015
Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys.
Commun. 192, 97–107. (doi:10.1016/j.cpc.2015.02.028)

26. Anderson JA, Lorenz CD, Travesset A. 2008 General purpose molecular dynamics
simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359.
(doi:10.1016/j.jcp.2008.01.047)

27. The Regents of the University of Michigan. 2020 HOOMD-blue. https://glotzerlab.engin.
umich.edu/hoomd-blue/index.html.
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