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Mapping hyperbolic order in curved materials†

Martin Cramer Pedersen, *a Stephen T. Hyde, b Stuart Ramsdenc and
Jacob J. K. Kirkensgaard ad

Nature employs an impressive range of topologically complex ordered nanostructures that occur

in various forms in both natural and synthetic materials. A particular class of these exhibits negative

curvature and forms periodic saddle-shaped surfaces in three dimensions. Unlike pattern formation on

flat or positively curved surfaces like spherical systems, the understanding of patterning on such surfaces

is highly complicated due to the structures being intrinsically intertwined in three dimensions. We

present a new method for visualisation and analysis of patterns on triply periodic negatively curved

surfaces by mapping to two-dimensional hyperbolic space analogous to spherical projections in

cartography thus effectively creating a more accessible ‘‘hyperbolic map’’ of the pattern. Specifically, we

exemplify the method via the simplest triply periodic minimal surfaces: the Primitive, Diamond, and

Gyroid in their universal cover along with decorations from a soft materials, whose structures involve

decorations of soft matter on negatively curved surfaces, not necessarily minimal.

Introduction

The role of curvature in material science has a long history,
going back at least a century to J. J. Thompson and his study of
charge distributions on a sphere1 which in recent times
has found relevance in a range of spherical packing problems
from viral capsid patterning,2 colloidosomes,3 superconducting
films,4 polymer self-assembly5 and many other examples
related to spherical defect distributions.6 Packings on spheres
constitute phenomena related to surfaces with positive Gaussian
curvature, but more recently related problems on negatively-
curved surfaces have been explored both theoretically and
experimentally.7–11 These studies have focused on patterning on
a catenoid, one of the simplest examples of a negatively-curved
and embedded (i.e. not self-intersecting) minimal surface.
Another important class of negatively curved surfaces are triply-
periodic hyperbolic surfaces which underly an extraordinary
variety of assemblies in materials. The simplest examples, which
have zero mean curvature are the triply-periodic minimal surfaces
(TPMS). In particular, the topologically simplest and most sym-
metric TPMS, the Primitive surface,12 Diamond surface12 and
Gyroid surface13 all shown in Fig. 1(a) are related to the micro-
structures of many materials, both actual and hypothetical,

perhaps best known from soft materials as bicontinuous phases
routinely observed in block copolymer melts14 and lipid-based
lyotropic liquid crystalline systems.15

Our approach is applicable to any bicontinuous film, which
generates a pair of interwoven three-periodic labyrinths, with-
out self-intersections. The most symmetric examples are the
Primitive, Diamond, and Gyroid TPMS as just mentioned, and
in the case of lyotropic liquid crystals, there is good evidence
that self-assembled bilayers lie on TPMS,18–21 although we note
that the physical interfaces are displaced to either side of the
TPMS. More generally, microstructural interfaces in a range of
materials are topologically equivalent to these TPMS, but may
not have vanishing mean curvature, characteristic of minimal
surfaces. However, they are triply-periodic, with the same
underlying lattices and topology as the TPMS. For convenience,
we call all such surfaces TP(M)S; these are defined more care-
fully in the ESI.† These TP(M)S appear at many different length
scales in condensed materials and in the natural world. They
are responsible for structural coloring in butterfly and other
insect species, due to the TP(M)S ultrastructure of the chitin
matrix in their external scales, which acts as a photonic
crystal.22 Similar structures are found within sub-cellular orga-
nelles: so-called cubic membranes have been identified in all
kingdoms of life,23 including photosynthetic chloroplast-
precursors of higher plants or spatially complex bicontinuous
lipid phases in lung surfactants.15 They are also hypothesized
to exist at sub-nuclear length scales in nuclear pasta – gener-
ated under conditions typical of a supernova explosion.24

At less exotic conditions, negatively-curved graphitic carbon
(‘‘schwarzites’’), whose covalent network describes a tessellation
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of TPMS structures analogous to the tilings of positively-curved
surfaces of fullerenes, have been recently synthesised.25

The negative-curvature and resulting complex topology of schwar-
zites imposes topological constraints on allowed atomic rings
in the structure:26 those constraints are likely responsible for

paramagnetism in related graphitic materials,27,28 for example.
More recently, novel hard materials incorporating TPMS struc-
tures (via soft intermediates) have been successfully synthesised,
with significant potential to tailor exotic collective magnetic
and superconducting properties, specific to their negative
curvature.29,30 Evidently, these convoluted structures are relevant
to an extraordinary variety of natural and synthetic materials.

A complex feature of all TP(M)S is their intrinsic two-
dimensional geometry: they are, on average, hyperbolic (i.e.
saddle-shaped, with negative Gaussian curvature). The simplest
members, TPMS, are in fact hyperbolic everywhere on the
surface, except at isolated points, although their curvature
varies symmetrically over the surface. In contrast, hyperbolic

two-space, H2, has negative and constant Gaussian curvature.

A crucial observation is that H2 is a covering space of the TPMS
in Fig. 1.31 Similarly, it covers all TP(M)S. This implies that

many symmetric patterns in H2 can be mapped to crystalline

patterns in three-dimensional euclidean space (E3) as follows.

First, decorate H2, then map that pattern onto a TP(M)S. That
has been done for TPMS. The final crystalline patterns are

realised by embedding those decorated TPMS in E3, then

removing the TPMS substrate, leaving the decoration in E3. In
short, the process proceeds from (curved) two-dimensions to
(flat) three-dimensional space. That pathway is computation-
ally convenient, allowing pattern enumeration ab initio in two-

dimensions rather than three. For example, tessellations of H2

can be realised by a broad variety of finite tiles, whose edges
induce crystalline networks, of relevance to chemistry, physics,

and mathematics.32–41 Further, tessellations of H2 by infinite
ribbon-shaped tiles, related to so-called ‘‘free tilings’’34,35,42,43

map to complex interwoven networks in E3 via TPMS, which
match patterns found in numerical simulations of self-
assembled star polymers.42,44,45 The latter will be reconsidered
later in this paper.

Here, we present a computational solution to the inverse
problem, allowing us to map from a topologically complex
structure in conventional three-dimensional space (E3), either
confined to a TPMS or a more generic hyperbolic, three-
periodic surface, a TP(M)S, or forming a film resembling a
thickened TP(M)S, onto a two-dimensional diagram on the flat
page, which captures essential geometric features of the origi-
nal surface structure. In principle, any hyperbolic surface can
be mapped as described below. Our procedure is loosely
analogous to the problem of exploring geography of the terres-
trial globe via a flat map; however, our globe is a TP(M)S, with
endless interwoven labyrinths. In essence, our procedure
unfolds a patterned TP(M)S forming a pattern on H2, which
in turn is mapped onto the flat page. Most importantly, the
procedure affords a simple ‘‘quasiconformal’’ metric distortion
of the original pattern which is readily identified, allowing the
intrinsic in-surface symmetries of the patterned TP(M)S to be
explored within the flat map. The technique allows unprece-
dented quantitative structural analysis of hyperbolic two-
dimensional patterns, from ideal crystals to disordered ‘‘melts’’
as we will demonstrate via examples below.

Fig. 1 (a) Left column: Orthographic visualizations of the three TPMS in
their conventional cubic unit cells. Right column: These unit cells shown in
the Poincaré disc model of H2.16,17 These contain 96, 384, and 192
triangles, respectively. The space groups describing the symmetries of

the embeddings in the left column are Pm %3m, Fd %3m, and I4132; and
each triangle in the images on the right is a domain of the symmetry
group labeled *246. (b) A decorated unit cell of the Primitive surface.
(c) A hyperbolic dodecagon representing a single copy of the unit cell
domain of the Primitive surface shown in (b) drawn in the universal

covering space, H2. (d) Multiple (in fact infinite) copies of the unit cell
generated by translating the patch in (c) by a six-dimensional lattice,
comprised of the three translational symmetries of the surface and three
in-surface collars (here, these collars are defined by the loops on the faces
of the bounding cube).
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The paper is structured as follows. First, we describe the
relationship of the simplest (and most symmetric) hyperbolic
surfaces embedded in E3, the Primitive, Diamond and Gyroid
TPMS, to the hyperbolic plane and describe our algorithm to
transform discretised meshes of TPMS into a flat mesh con-
fined to the unit disc. We then explore the nature of intrinsic
order in hyperbolic surfaces, classified via two-dimensional
orbifold symbols (described in detail in the ESI† and
elsewhere46,47) and demonstrate the retention of that order in
a discretised flat disc map, modulo the metric rescaling
required to map from TPMS (or TP(M)S) onto the disc via the
hyperbolic plane. Lastly, we present a number of applications
of our algorithm to very different materials with varying degrees
of hyperbolic order, from hard discs to copolymeric assemblies.

Curvature and hyperbolic surfaces

We focus first on the three TPMS in Fig. 1(a) since they are the
archetypal representatives of the broad class of related surfaces,
TP(M)S, whose interfaces are, like TPMS, three-periodic and
hyperbolic. We summarise the mathematical features of curved
(minimal) surfaces, including TPMS and TP(M)S, in the ESI.†
Throughout the manuscript, we shall distinguish between
‘‘intrinsic’’ properties of these surfaces, which are independent
of the manner in which these surfaces are embedded in the
ambient space, and ‘‘extrinsic’’ properties which depend on
embedding. We note that in fact, among all TP(M)S, TPMS are
maximally intrinsically symmetric in E3, and the most intrinsi-
cally symmetric are the Primitive, Gyroid and Diamond
surfaces.48 All three are related to each other by the Bonnet
transformation13,49,50 so they are intrinsically identical and can
therefore be superimposed on each other (with suitable cuts),
with identical curvature and metric variations over the surface.
However, their extrinsic embeddings are different: the same
hyperbolic surface admits three different embeddings in E3,
forming different arrangements of channels (labyrinths) on
either side of the TPMS, surrounded by ‘‘collars’’ on the TPMS.
As a result, the three TPMS have distinct cubic space groups,
listed in Fig. 1(a). We note in passing that the Gyroid admits
two embeddings in E3 whose differences only emerge when the
surface is decorated by a pattern which is intrinsically chiral
(i.e. without in-surface reflection symmetry).51

The translational periodicity and non-trivial topology
(induced by the collars) of these TPMS give rise to two ways
of visualizing a specific pattern: (i) each distinct point on the
TPMS as well as all of its copies by some translation vector in
E3, maps to a distinct image point in H2, giving a finite patch in
H2 corresponding to a single unit translational domain (a unit
cell) of the surface, and (ii) each point in a single unit cell maps
to multiple distinct points in H2 covering H2 completely.

Of particular importance to us is the notion of the universal
cover of a surface; which is defined as a space in which each
point corresponds (not necessarily one-to-one) to a point on the
surface, and in which all closed curves can be contracted to a
single point (i.e. the universal cover is ‘‘simply connected’’).

Our goal is to map patterns on these three TP(M)S onto the flat
page, conserving symmetries as far as possible as well as
structural contiguity (so that adjacent elements remain adja-
cent). Since all TP(M)S have variable Gaussian curvature and
their universal covers (H2) do not, it is impossible to map them
onto H2 without some distortion of lengths (just as the Earth
cannot be mapped onto the page without distortion). However,
a discretised map, which preserves angles to an arbitrary
accuracy dependent on the discretisation grid, is possible.
Further, any symmetry in the TP(M)S can be mapped to a
symmetry in H2, which is then identifiable on the flat page by
a further step. Hyperbolic space is – to say the least – extensive.
(For example, the tiling in Fig. 1(d) describes an infinite
number of copies of the complete Primitive surface, which
includes an unbounded number of copies of the unit cell,
translated in all three directions.) Remarkably, it can be
squeezed into an open unit disc on the flat page via the
Poincaré (disc) model of H2 (described in the ESI†).

In technical terms, we seek a conformal map from our
TP(M)S in E3 to their universal cover, H2. Many such maps
are suitable; examples include the Gauss map,52 the Schwarz–
Christoffel map53 and Stephenson’s circle packing algorithm,54,55

dubbed CirclePack, which we employ here. The procedure relies
on recent developments in computational geometry,56,57 in con-
junction with the CirclePack procedure, which allows construc-
tion of quasiconformal maps in H2. We demonstrate its
application via a number of examples with varying degrees of
intrinsic hyperbolic symmetry, including symmetric TPMS and
less symmetric related TP(M)S.

Consider first the map from a TPMS. We construct periodic
triangulations of TPMS using the methods implemented in
CGAL56,57 via the ‘‘nodal surface’’ approximations of these
surfaces.58 (Notice that the mean curvature of these nodal
surfaces is not zero, so these surfaces are strictly speaking
TP(M)S, although they are virtually indistinguishable from their
parent TPMS.) Each triangulated mesh is then input into
CirclePack, yielding a quasi-conformal triangulated mesh in
H2, which is aligned with the TP(M)S with the help of standard
embeddings of the translational domains of these surfaces in
H2.17 The details of this process are outlined in the ESI.† The
triangular meshes of the three TPMS in E3 and their corres-
ponding meshes in H2 are shown in Fig. 2 along with decora-
tions that will be relevant later.

Order in hyperbolic surfaces

Patterned curved surfaces embedded in usual three-space induce
intrinsic symmetries within the two-dimensional surface as well
as extrinsic symmetries, visible in three dimensions. For example,
a patterned sphere in euclidean three-space induces intrinsic
discrete isometries in the surface of the sphere and fixed-point
isometries in three-space. The intrinsic order is captured by the
spherical orbifold induced by the pattern, whereas its extrinsic
order is associated with some point group. That distinction
between intrinsic and extrinsic order is often overlooked in the
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plane or on the sphere, since there is one-to-one correspondence
between the planar or spherical isometries and wallpaper or point
groups.59 For example, an icosahedral pattern can be generated

on the sphere by decorating a
p
2
;
p
3
;
p
5

spherical triangle, followed

by repeated reflections of that decorated triangle in its edges. That
pattern has intrinsic order given by the orbifold symbol *235 and
extrinsic order given by the point group, labelled by the Schoen-
flies symbol Ih. Alternatively, a chiral icosahedral pattern results
by repeated rotations of order 2, 3, 5 centred on vertices of the
same triangle: that pattern has intrinsic order 235 and extrinsic
order I. (Two-dimensional orbifolds are discussed further in the
literature59,60 and the ESI.†)

Patterned hyperbolic surfaces embedded in three-space also
display intrinsic and extrinsic order. Again, their intrinsic order
is described by the two-dimensional orbifold associated with
the hyperbolic pattern. If the embedding of the hyperbolic
surface is three-periodic its extrinsic order is described by the
associated crystallographic space group. In the hyperbolic case
orbifolds and space groups are not in one-to-one correspon-
dence since TP(M)S can have different extrinsic embeddings.59

The most symmetric pattern on a TPMS has orbifold symbol

*246,48 in which case the asymmetric domain is defined by

three mirror lines forming a hyperbolic triangle with vertex

angles
p
2
;
p
4
;
p
6

. That intrinsic order is possible only in the

Primitive, Gyroid and Diamond minimal surfaces, whereas less
symmetric patterns can be found on other TP(M)S. Repeated
rotations in the three vertices of that hyperbolic triangle (of
order 2, 4, 6), with no reflections, generates a hyperbolic pattern
with chiral intrinsic symmetry, denoted 246, analogous to
chiral icosahedral patterns in the sphere. Since the variety
and number of hyperbolic orbifolds far exceeds the more
familiar spherical and flat orbifolds, it is useful to classify them
into seven distinct classes, dependent on the topology of the
orbifold, described elsewhere.59 Those classes distinguish, for
example, ‘‘coxeter’’ patterns (e.g. *246, generated by mirrors
alone) from ‘‘stellate’’ patterns (e.g. 246). Other orderings are
possible, e.g. orbifolds containing only glide reflections or
translations. Within each class, there is a unique, maximally
symmetric, hyperbolic orbifold describing the intrinsic order of
any hyperbolic film in three-space; each case can be realised by
a patterned TPMS, as shown in the top row of Fig. 3.

Ordered patterns in a hyperbolic TP(M)S can be transformed
to patterned Poincaré discs, via the algorithm introduced in the
previous section. Since any hyperbolic isometry in the pat-
terned TP(M)S induces the same isometry in its universal cover

in H2, the intrinsic structural order within a triangulated mesh

of the TP(M)S is retained in its corresponding mesh in H2,
which in turn is retained in the final mesh in the flat disc,

subject to the metric rescaling induced by the mapping from H2

to the Poincaré disc. (The metric rescaling is described in ESI.†)
Despite that rescaling, the quasi-conformal nature of the map
ensures that the final pattern retains all traces of intrinsic order
in the original patterned TP(M)S. Careful inspection of a
discretised disc map of a symmetrically patterned TP(M)S
reveals the signatures of all of the intrinsic reflections, transla-
tions, etc., modified by the inherent rescaling due to the
Poincaré map.

To be more precise, the numerical implementation of our
mapping algorithm necessarily introduces some disorder, due
to discretisation. Nevertheless, the underlying order can be
preserved modulo minor distortions, provided sufficient discs
are introduced to the disc-packing algorithm. Consider for
example a pattern on a true TPMS, such as the hyperbolic
(low density) packing of warped ‘‘pennies’’ on the Primitive
TPMS, shown in Fig. 1(b). That pattern results in a symmetric
pattern in the unwrapped Poincaré model, shown in Fig. 1(c),
provided the resolution includes many constituent discs in
the discretisation of the penny pattern. Indeed, each disc is
surrounded by six neighbours; their centres coincide with
centres of 6-fold rotational symmetry, at which six mirror lines
intersect. Those lines induce a pattern with *246, characteristic
of maximal symmetry on hyperbolic surfaces. Given that sym-
metry, we conclude the original penny pattern is ordered.
Another example is afforded by mapping the so-called collars
of the Primitive, Diamond, and Gyroid TPMS onto the Poincaré
disc model. Recall that since these TPMS are not simply
connected, some loops wrap around channels of the TPMS.

Fig. 2 (a) High-resolution triangulations of nodal approximations of the
Primitive, Diamond and Gyroid TPMS58 marked by colored collars (their
shortest, non-trivial loops). Note that only half of the collars of the Gyroid
are shown for simplicity. (b) Quasiconformal maps of the TPMS in H2,
including the collars, colored as in (a). The maps are aligned with the
translational domains of the surfaces given by their conventional cubic unit
cells, corresponding to those shown in Fig. 1. (c) Dodecagonal regions
excised from the maps in (b), corresponding to domains of 333. Fig. S2
(ESI†) contains copies of these images with a grid of *246 domains
superimposed.
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Those loops cannot be shrunk into a vanishingly small circuit
in the surface. However, each such loop can be shrunk to a
geodesic of shortest circumference; the simplest cases are the
collars, which surround a single channel of the TPMS. Fig. 2
displays collars on all three TPMS and their images in the
Poincaré model of H2 described above.

Thus, ordered patterns in TP(M)S induce characteristic
maps in the Poincaré disc. With some practice, the intrinsic
isometries of those maps – whether reflections, rotations, glide
rotations or translations – can be detected by inspection, noting
that translations traverse circular trajectories in the disc, lead-
ing to simultaneous rotation and shrinkage of motifs from the
centre towards the disc edge. The discrete map therefore
affords a useful insight into the degree of ordering in
self-assemblies on TPMS or associated substrates, as we
demonstrate below.

Examples

In our first examples, we analyse two very different systems
confined to an a priori known surface, namely a TPMS. In those
cases, we can analyse the emerging structures using the pre-
computed meshes for the TPMS given in Fig. 2. Later, we
explore assemblies leading to hyperbolic films whose geometry
is unconstrained in two dimensions and relaxed in three-
dimensional space. It is nevertheless, three-periodic since it is
confined to a box with periodic boundary conditions. In that
more general scenario, the mid-surface of the film is a TP(M)S,
whose specific geometry is not known a priori and is not
necessarily minimal.

Monte Carlo simulations of hard spheres on TPMS

In this section, we demonstrate the method applied to three
examples of hard sphere packings on our TPMS published by
Dotera et al.61 as results of Monte Carlo simulations of hard
spheres confined to the nodal approximation of these
surfaces.58 These structures realize the hyperbolic analogue of

Caspar and Klug’s hexagulation numbers;62 we show an exam-
ple from each of our surfaces in Fig. 4 produced using the
reported crystallographic coordinates.61 The patterns are read-
ily visualized in H2 using the precomputed meshes from Fig. 2.

From the patterns visualized using the Poincaré disc, one
readily identifies the in-surface symmetries described by two
occurrences of the same hat orbifolds (4*3) and a stellate
orbifold (246) in these examples. We note that our visualization
enables us to identify an intrinsic (i.e. in-surface) symmetry
not realised as an extrinsic symmetry: a priori one would expect
the space group I%43d to correspond to the orbifold symbol
344 on the Gyroid,59 however, by considering the pattern in the

Fig. 4 Three examples of hard sphere packings on the TPMS enumerated
by their hexagulations number, H. The translational domains contain 96,
224, and 48 particles/discs, respectively. The top row shows the surfaces
inked by the crystallographic coordinates of the underlying structure along
with the related space group. Below, we show the same structures
visualized in H2 using the outlined methods along with their orbifold
symbols. Versions of the images in the bottom row with the asymmetric
domains/orbifolds annotated are available in the ESI.†

Fig. 3 Demonstration of maps of patterned TPMS to H2 for examples from each of the seven classes of orbifolds.59 In the top row, we annotate each
example by its space group, and below, by its corresponding orbifold symbol. Larger versions of the images in the bottom row with their asymmetric
domains highlighted can be found in Fig. S3 (ESI†).

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
4 

Ja
nu

ar
y 

20
23

. D
ow

nl
oa

de
d 

by
 N

ew
 C

op
en

ha
ge

n 
U

ni
ve

rs
ity

 o
n 

2/
8/

20
23

 9
:4

3:
43

 A
M

. 
View Article Online

https://doi.org/10.1039/D2SM01403C


Soft Matter This journal is © The Royal Society of Chemistry 2023

universal cover we identify that the in-surface symmetry is in
fact an index-2 supersymmetry of 344, namely 4*3. The dis-
crepancy emerges as the mirror symmetries in 4*3 are not
realised as spatial symmetries in E3 via the embedding on the
Gyroid.

Confined diblock co-polymer self-assembly

The examples above were unequivocally ordered, and their
intrinsic symmetries are captured by analysis of the orbifolds
in their patterned flat maps. We show next that less ordered
patterns too can be fruitfully explored with this technique.

The following examples explore numerical simulations of self-
assemblies of diblock co-polymers, which are known to form
intricate patterns resembling TPMS.42 We first idealise those
surface geometries numerically by confining the co-polymers to
true TPMS and use our map to probe the evolution of hyper-
bolic order in time. Fig. 5(a–c) shows an example. The simula-
tions explore the self-assembly of compositionally balanced
diblock copolymers (an example of which is shown in
Fig. 5(a)) confined to the Primitive surface using conventional
dissipative particle dynamics (DPD) simulations.64 Simulation
details can be found in the ESI.† Simulation snapshots, plus
their corresponding quasiconformal flat maps are shown in

Fig. 5 Examples of confined DPD polymer simulations. See simulation details in the ESI.† (a–c) Time series of a DPD simulation of a 3 : 3 diblock
co-polymer melt confined to the Primitive surface. (a) A single AB diblock molecule. (b) The upper row shows four snapshots of the self-assembly
process of such molecules confined to the Primitive surface. The lower row shows corresponding quasiconformal maps in H2. (c) The final pattern,
overlaid with a grid of *222222 orbifolds. The black arcs are mirror lines and the black circles indicate the *2 symmetry points. In Fig. S5 (ESI†), we
demonstrate how rigid body transformations, which move different points to the center of the disc, enable the identification of mirror lines. (d–g) DPD
simulation of 4 : 4 diblock co-polymers confined to the Primitive surface resulting in a hyperbolic forest structure. (d) A single snapshot of the simulation
state after convergence. (e) Volumetric occupancy map over several frames in the simulation trajectory (after convergence). (f) The occupancy map in (e)

visualized in H2 using the methods outlined in this paper. We note that the mesh is inked from the positions of the most occupied voxels in the volumetric
occupancy map. (g) The intrinsic symmetries correspond to the orbifold 2*23 which signifies the pattern as the acosh(5) hyperbolic forest.34,35,63 As in (c),
the black lines are mirror lines, and the black circles denote either *2 points, *3 points, or rotational two-fold symmetries. (h–k) DPD simulation of a
3-armed star polymer confined to the Gyroid. (h) Rendering of a 3 : 3 : 3 ABC star polymer. (i) The final structure emerging in a DPD simulation of the

polymers in (h) when confined to the Gyroid. (j) The structure from (i) visualized in H2 via the mesh introduced in Fig. 2. (k) Histogram of the abundance of
the colored polygons in (j).
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Fig. 5(b). The color coded polymer units phase separate, and
over time we observe how the initial random configuration
changes into locally phase separated ‘‘colored’’ domains.

The flat map affords a detailed portrayal of the evolution of
the nanodomains in these copolymer assemblies over time: as
the simulation progresses, domains merge and split, relaxing to
form the structure in the final snapshot which is very nearly
symmetric, as shown in Fig. 5(c). In fact, the pattern nearly
exhibits *222222 (*26) symmetry, i.e. subgroup #55 among the
subgroups of *246/333.16 That orbifold on the Primitive surface
leads to a pattern with three-dimensional orthorhombic sym-
metry, corresponding to space group #47, or Pmmm.59 The map
in Fig. 5(c) also reveals that the red and blue domains are very
nearly congruent: the center of an *26 patch (located at the
origin of the Poincaré disc) hosts a site of two-fold rotational
symmetry, which exchanges red and blue domains. Therefore
the uncolored pattern, decorated only by the domain bound-
aries, has approximate symmetry 2*222 (subgroup #100),
leading to a domain structure with three-dimensional orthor-
hombic symmetry Immm.59 Clearly, the map offers insight into
an otherwise extremely complex hyperbolic structure in E3. In
fact, such detailed assignment of symmetries would be very
difficult based on the 3D structure alone. We note in passing
that the pattern found here is novel. Previous analyses of two-
phase structures in TPMS have not explored structures with the
approximate symmetries seen here42 or the possibility of
equivalent branched ribbon domains for both phases, observed
here.45

Fig. 5(d–g) outlines the outcome of another such simulation
of confined diblock co-polymers. Here, we observe the emer-
gence of a pattern with approximate 2*23 symmetry (subgroup
#12916) corresponding to space group #211, or I432.59 This
allows us to identify the pattern as the highly symmetric
‘‘acosh(5) hyperbolic forest’’34,35,63 previously hypothesised to
form on the Gyroid, but not found.42 We note that while the
pattern in Fig. 5(c) includes an approximate isometry which
exchanges red and blue domains, the pattern in Fig. 5(f and g)
demonstrates spontaneous symmetry breaking in the system;
despite identical ‘‘molecular’’ interactions and structure, the
red and blue ribbon structures are not related via symmetry.

Confined triblock co-polymer self-assembly

The simulations described in the previous section are readily
extended to molecules with a more elaborate architecture. Here
too, the discrete map affords useful structural insights.
Fig. 5(h–k) shows the outcome of a DPD simulation of three-
armed star polymers confined to the Gyroid. As above, all arms
are equal, ensuring that each color fills the same volume. The
resulting pattern is analogous to those formed by self-assembly
of balanced 3-arm stars in the flat plane, which form a
3-colored hexagonal tiling.66 A single simulation of the hyper-
bolic assembly gives the map in Fig. 5(j), which reveals nano-
domains, forming a somewhat disordered tessellation of the
Gyroid by hyperbolic polygons, whose topologies are easily
interpreted from the disc image. We note that the boundary

arcs of domains merge at trivalent vertices, subtending angles

close to
2p
3

, as in the planar analogue. Each domain is an even-

sided polygon, allowing alternating coloring of the surrounding
polygons, thereby ensuring three-coloring of all vertices. We
have collected statistics for the number of sides (degree) of all
polygons in Fig. 5(j), giving the distributions in Fig. 5(k).
As expected, all three colours give similar polygon statistics,
leading to an average polygon degree of 6.5.

Those statistics imply a preferred extension of the copoly-
mer arms, which can be estimated as follows. We simplify the
polygons, and model them as symmetric n-gons with equal

sides and equal internal vertex angles of
2p
3

. Standard formulae

for regular polygons in H2 give in- and out-radii of:

rin ¼ acosh
cosec

p
n

� �
2

0
@

1
A rout ¼ acosh

cot
p
n

� �
ffiffiffi
3
p

0
@

1
A

or an average radius of approximately 0.41, estimated by
averaging in- and out-radii and setting n = 6.5. That radius
needs to be rescaled, since H2 has unit radius of curvature,
whereas the Gyroid in the simulation has a (surface-averaged
value of) the radius of curvature equal to:67

�r ¼ H

�2pw

� �1
3
L

Here, L is the lattice parameter of the simulation box, 2pw is
the integral (Gaussian) curvature of the Gyroid within the box
and H is the dimensionless surface-to-volume ratio of the
Gyroid. Since the simulation assigns a unit distance between
relaxed beads and confines the Gyroid to a cube of edge-length
20, L = 20, w = �8 and H = 0.7665, so its average radius of
curvature is �r = 4.96. Therefore the extension of each arm in the
star copolymer has an average value of approximately 0.41 � 4.96.
That implies that each arm, whose relaxed end-to-end distance is
at most 3, optimises its chain entropy by forming chains whose
end-to-end distance is approximately 2.1. In other words, an
estimate of the average value of the relaxed arm length in the
copolymer assembly can be deduced from the average polygon size
of 6.5, which is easily detected in the map shown in Fig. 5(j).

Unconfined co-polymer self-assembly in three-dimensions

The previous examples demonstrate self-assembly of polymers
under confinement. In this section we turn our attention to
bulk self-assembly. This case is different from those above,
since we no longer assume the structure forms on a pre-
determined surface. Here the surface emerges from the simula-
tions, and is found numerically using the method outlined in
the ESI.† We note that the only requirement here is that the
surface is a TP(M)S, sufficiently well sampled that the topology
of the resulting mesh is that of a TP(M)S. Earlier three-
dimensional simulations of star polymers have revealed the
gradual assembly of complex ribbon-shaped domains within a
TP(M)S resembling the Gyroid.42
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The self-assembly of those star polymers was simulated by
filling a periodic cube with a 1 : 1 mixture of the star polymers
shown in Fig. 6(a), then computing the equilibrium structure of
the polymer mixture via DPD, giving assemblies such as those
in Fig. 6(b). These three-dimensional data allowed us to con-
struct surface maps as shown in Fig. 6(c). First, we selected the
two minority components of our polymer molecules for further
analysis and computed the volumetric occupancy maps65 of the
two components. From these, we refined a periodic mesh
representing the underlying TP(M)S using the methods out-
lined above. The resulting mesh is shown in Fig. 6(d). Lastly, we
computed the quasiconformal flat map shown in Fig. 6(e).

The maps give useful insights into these assemblies, Fig. 6
shows two such phases and their discrete flat maps. The domain
patterns, including their in-surface connectivity and approximate
symmetry, as well as a variety of other structural, geometric, and
topological properties are readily identified from the quasiconfor-
mal maps. For example, the upper and lower maps in Fig. 6(e)
reveal striking differences in the in-surface widths of the (blue)
ribbon domains: the upper map contains thicker ribbons than the
lower, accompanied by less branching. Such information is phy-
sically significant, yet very difficult to extract from a conventional
three-dimensional surface visualisation.

Discussion and conclusions

We have presented a computational pipeline for analysis and
visualization of patterns which form on surfaces of negative

Gaussian curvature in the flat plane, via flat maps induced by
their universal cover, the hyperbolic plane, H2. We note that our
map necessarily smoothes out all variations of Gaussian curva-
ture, essentially moulding the TP(M)S to the hyperbolic plane,
which has constant Gaussian curvature. However, smoothing
does not remove any intrinsic order in the original patterned
hyperbolic surface, assumed here to be a TP(M)S. After all, the
pattern cannot be more intrinsically symmetric than that of the
underlying surface, which in turn is set by the variations of
Gaussian curvature in the surface (e.g. *246 for the TPMS, *2223
for the TP(M)S parallel to the Primitive TPMS). Thus, the
map retains the intrinsic order of its inhomogenous TP(M)S
precursor.

We have explored two scenarios. The first assumes the
structure is localised on a fixed surface of prescribed geometry,
namely a TPMS. The second demands only an arbitrary TP(M)S.
The simulation gives a thickened connected film, whose mid-
surface is constrained only to be three-periodic.

The first scenario allows analysis of idealized cases where
particles, patterns, or impurities, etc. are confined to a surface
of specified geometry, namely the three simpler TPMS. How-
ever, the pipeline can be readily extended to other surfaces
whose hyperbolic crystallography is established.59 Those surfaces
include the two-periodic (genus-2) HCB- and SQL-surfaces,36,68

as well as other TPMS, such as the (genus-3) H-surface12 with
hexagonal symmetry, the (genus-3) CLP-surface12 and the
(genus-4) I-WP-surface;13 all of which are relevant to micro-
structured materials. We have analysed data from Dotera et al.
of hard sphere arrays confined to TPMS, as well as our own

Fig. 6 The pipeline affords an explicit view of hyperbolic patterns in bulk star polymer assemblies. (Details of these simulations and the emergence of Gyroid-
like phases are explained elsewhere.42) (a) Renderings of models of ABC- and ABD-miktoarm star polymers emphasizing their molecular architecture, with
relative molecular weights of 4 : 4 : 9 and 4 : 4 : 12, respectively. The color scheme is explained in the bottom of the figure. (b) Two examples of the final frame of
DPD molecular dynamics simulations of a 1 : 1 mixture of the molecules in (a). (c) Volumetric occupancy maps65 of the two minority components, A and B, of the
simulated polymers averaged over the last several frames in the trajectories – exhibiting a morphology reminiscent of the Gyroid surface. (d) Triangular, periodic
meshes refined from the structures in (c). Edges connecting vertices near the boundary of our unit cell to vertices on the opposing boundary are not shown.
(e) The meshes in (d) visualized in H2. The geodesics used for the alignment process (as explained in Fig. S1) can be found in the ESI.†
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simulations of confined co-polymers. Other systems are relevant to
the simpler confinement scenario. We mention in particular
recent work exploring the dynamics of active matter confined to
TPMS,69 zeolites templated on TPMS25 and self-assembly of col-
loids forming surfaces of negative curvature.70,71 The second
scenario is broader still, since it does not impose a specific surface
geometry. Rather, any hyperbolic TP(M)S (in the sense defined in
ESI†) can be analysed, giving a simple planar representation of
patterning in these otherwise topologically complex convoluted
surfaces. The technique allows us to identify the underlying ideal
order in a patterned hyperbolic film, such as the examples in
Fig. 5(c, g and j). Armed with that ideal, defect-free, pattern, defects
in the actual film can be readily detected and characterised.

In summary, the numerical pipeline and analysis of the
topologies and symmetries of these maps afford a practical
insight into self-assemblies of multiple species within a three-
periodic hyperbolic film, giving multi-coloured hyperbolic pat-
terns. While we have focused here on simulations, the same
technique can be applied to experimental data. Due to recent
advances in nanoscale imaging techniques, experimental evi-
dence of intrinsic hyperbolic patterning has become increas-
ingly obtainable in recent years.72,73

Software

The initial handling, smoothing, and generation of the periodic
meshes needed as input to the disc packing algorithm were
handled using CGAL.57 Further handling of the meshes was
done using the OpenMesh Python module. The molecular
dynamics simulations were performed using HooMD-blue74,75

based on the DPD model.64 Visualizations of the patterns
on the Poincaré disc were done using the Python module
Matplotlib, and the three-dimensional graphics were rendered
using Pymol, VMD, and SideFX Houdini.

Our Python code for constructing, manipulating, and visua-
lizing hyperbolic patterns represented in the Poincaré disc
model of H2 is available via the Gitlab repository at https://
www.gitlab.com/mcpe/H2Tools. Examples and scripts are avail-
able from the same repository. Scripts for handling points set
and meshes in C++ and CGAL are also available from this
repository.
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G. E. Schröder-Turk, J. Chem. Phys., 2020, 153, 034903.
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