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Ultrastructural membrane arrangements in living cells and their dynamic remodeling in
response to environmental changes remain an area of active research but are also subject
to large uncertainty. The use of noninvasive methods such as X-ray and neutron scattering
provides an attractive complimentary source of information to direct imaging because in
vivo systems can be probed in near-natural conditions. However, without solid underlying
structural modeling to properly interpret the indirect information extracted, scattering
provides at best qualitative information and at worst direct misinterpretations. Here we
review the current state of small-angle scattering applied to photosynthetic membrane
systems with particular focus on data interpretation and modeling.
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1 INTRODUCTION

The lamellar nature of thylakoids was shown in the pioneering works of Menke in 1940 (Menke,
1940a; Menke, 1940b) who studied the inner structure of chloroplasts by light and electron
microscopies. From these studies, it became evident that photosynthetic membranes are not
randomly dispersed within the cell but organize into highly complex ultrastructures. Figure 1
depicts representative transmission electronmicroscopy (TEM) images of photosynthetic membrane
systems: from the remarkably intricate network structure of the prolamellar body found inside
developing etioplasts to individual cyanobacterial thylakoids and finally stacked grana thylakoid
arrays in higher plants. The structural regularity in these TEM images suggests that structural
information can be extracted from X-ray or neutron scattering methods. In this review, we focus on
small-angle scattering techniques: small-angle X-ray (SAXS) and neutron (SANS) scattering.

Small-angle scattering enables investigating structures of ca. 1–200 nm in near in vivo conditions and is
widely applied in structural biology and soft matter sciences. Small-angle scattering complements various
microscopic techniques, such as TEM (Menke, 1960; Paolillo and Paolillo, 1970; Staehelin, 1986; Austin and
Staehelin, 2011; Armbruster et al., 2013; Heinz et al., 2016; Kowalewska et al., 2016; Wood et al., 2018;
Kowalewska et al., 2019; Wood et al., 2019; Li et al., 2020), scanning electron microscopy (Mustárdy and
Jánossy, 1979; Armbruster et al., 2013), cryo-EM (Ford et al., 2002; Kirchhoff et al., 2011; Engel et al., 2015),
cryoelectron tomography (Shimoni et al., 2005; Austin and Staehelin, 2011; Daum and Kühlbrandt, 2011;
Kouřil et al., 2011; Ford andHolzenburg, 2014; Bussi et al., 2019; Rast et al., 2019), atomic forcemicroscopy
(Kaftan et al., 2002; Sturgis et al., 2009; Sznee et al., 2011; Grzyb et al., 2013; Onoa et al., 2014), confocal laser
scanning microscopy (Kowalewska et al., 2016; Mazur et al., 2019), and live cell imaging (Iwai et al., 2014;
Iwai et al., 2016). The first scattering studies on photosynthetic membranes were performed in 1953 by
Finean et al. (1953) and has continued ever since. There are currently about 40–50 works published on
scattering from photosynthetic systems—photosynthetic bacteria, diatoms and other algae and of
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course from higher plants. Small-angle scattering has been
used to investigate structure and dynamic changes of thylakoid
membrane systems of plants (Finean et al., 1953; Kratky et al.,
1959; Kreutz and Menke, 1960a; Kreutz and Menke, 1960b;
Kreutz and Menke, 1962; Kreutz, 1963a; Kreutz, 1963b;
Kreutz, 1964; Sadler, 1976; Li, 1979; Sadler and Worcester,
1982a; Sadler and Worcester, 1982b; Diederichs et al., 1985;
Garab et al., 1997; Kirkensgaard et al., 2009; Nagy, 2011; Nagy
et al., 2011;Nagy et al., 2013; Ünnep et al., 2014b; Herdean
et al., 2016; Ünnep et al., 2017; Zsiros et al., 2020; Ünnep et al.,
2020), protists (Sadler et al., 1973; Worcester, 1976; Sadler and
Worcester, 1982a), diatoms (Nagy et al., 2011; Nagy et al.,
2012), photosynthetic bacteria (Pape et al., 1974; Hodapp and
Kreutz, 1980; Liberton et al., 2013b; Ünnep et al., 2014a; Li
et al., 2016; Stingaciu et al., 2016; Eyal et al., 2017; Jakubauskas
et al., 2019), algae (Nagy et al., 2011; Nagy et al., 2012; Nagy
et al., 2014), light harvesting complexes (Smidijiev et al., 2000;
Tang and Blankenship, 2012), phycobiliproteins (Golub et al.,
2017), and higher-plant prolamellar bodies (Williams et al.,
1998; Selstam et al., 2007). The aim of applying small-angle
scattering in biological sciences is to investigate structural changes of
the biological system and correlate them with underlying
physiological processes in vivo. This article critically reviews the
current state of small angle scattering applied to photosynthetic
membrane systems with a three-fold agenda: (1) to describe the
basics of the method and present an overview of existing small-angle
scattering results on photosynthetic membrane systems, (2) to
discuss scattering results and their correlation with microscopy,
critical points of result interpretation, and method limitations, and
(3) to envision the development of the small angle scatteringmethod
with focus on data analysis and modeling in the field of
photosynthetic membrane systems. The review is organized as
follows: small-angle scattering terminology and relevant
background is introduced in Section 2. Scattering results from
plant, cyanobacterial, algae, and diatom thylakoid membranes
including dynamic changes during illumination are critically
evaluated in Sections 3–6. Finally, an outlook is presented in
Section 7.

2 SMALL-ANGLE X-RAY AND NEUTRON
SCATTERING

2.1 The Small-Angle Scattering Experiment
The concepts described below are valid for both X-rays and
neutrons; however, certain differences arise due to the
different physical nature and interactions of photons and
neutrons with materials (see Table 1). In a material, either the
electrons (for X-ray scattering) or nuclei (for neutron
scattering) interact with the incoming radiation and deflect
X-ray photons or neutrons from their original path. The
electrons or nuclei become sources of elastically scattered
secondary waves, whose intensities are registered by a
detector as a function of the angle relative to the incoming
beam (see Figure 2A) (Glatter and Kratky, 1982; Willis and
Carlile, 2009). Contemporary detection systems typically
produce a 2-dimensional output as shown in Figure 2. If a
sample scatters azimuthally isotropic (Figure 2A), the 2-
dimensional pattern is centrosymmetric (Figure 2B). For
analysis, these 2-D patterns are typically azimuthally
averaged and collapsed into a 1-dimensional curve
(Figure 3B) showing scattering intensity as a function of
the scattering vector magnitude:

q � ∣∣∣∣q
∣∣∣∣ � 4π

λ
sin θ, (1)

where λ is the wavelength of the incident radiation (for
neutrons the de Broglie wavelength) and θ is half the
scattering angle (see Figure 2). Thus, the scattering vector
magnitude is a direct measure of the scattering angle, but
normalized by the wavelength of the radiation. These 1D
scattering data are analyzed analytically or numerically to
reveal the underlying structure, as described below. For
nonisotropic systems (Figure 2C), sector averaging can be
employed to yield 1-dimensional curves for each of the sectors,
but in some cases analysis is performed directly on the 2-
dimensional dataset. By combining Eq. 1 with Bragg’s law for
periodic structures:

FIGURE 1 | TEM images of photosynthetic membrane systems, revealing complex structural characteristics. (A) Etiolated maize prolamellar body. (B) Concentric
Synechocystis sp. PCC 6803 cyanobacterial thylakoids. (C) Higher plant grana stacks of Arabidopsis Col0, interconnected by stromal thylakoids.
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nλ � 2DR sin θ (n � 1, 2, 3, . . . ), (2)

a direct relation between q and a real-space structural periodicity
DR is obtained:

DR � 2πn
q

. (3)

The fundamental inverse relation between angles and
distances is defined in Eqs 1 and 3: larger angles (larger q)

probe smaller distances and vice versa. The integer n from
Bragg’s law appearing in Eq. 3 is called the “peak order” and
indicates that a certain distance DR, repeating in the material,
gives rise to a series of peaks in the reciprocal space, ideally one
for each value of n � 1, 2, 3, . . .. For an ordered lamellar stack, all
peaks are placed equidistantly. For more complex structures,
different peak positions reflect other crystallographic symmetries
and require more detailed analysis. Once a scattering intensity
pattern is recorded and corrected for background contributions,

TABLE 1 | Differences and practicalities of SAXS and SANS experimental techniques [adapted from Tang and Blankenship (2012)].

SAXS SANS

Interacting field Electrons Nuclei
Incident beam wavelength, Å 0.8–1.6 2.0–25.0
Flux of the source (particles/s/mm2) Medium to high (108−9–1011) Very low to low (105–108−9)
Coherent scattering length density, 10–12 cm H: 0.28, D: 0.28 H: −0.374, D: 0.667
Sample volumes required in 1–2 mm path length cell 20–30 μL 150–500 μL
Radiation damage to the sample Low for laboratory sources, high for synchrotron sources Low
Structural information extracted for individual No (electron density average of the entire sample) Yes (lipid, nucleic acid, protein
Moieties in multicomponent systems can be investigated separately)
Contrast variation use Rare Common
Resolution Low-medium Low-medium
Experimental facilities Laboratory and synchrotron radiation sources Large facilities only

FIGURE 2 | (A) General experimental setup. Incident radiation is collimated and penetrates the sample (green box). Scattering arising in 2θ direction and the
resulting scattering vector q are depicted in light blue. A beamstop (white) blocks the primary radiation. (B) Isotropic 2-dimensional scattering pattern from nonaligned
system. (C) Nonisotropic 2-dimensional scattering pattern from a magnetically aligned system.
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structural sample parameters can be extracted from the scattering
pattern by means of modeling as described below.

2.2 Scattering Length Density and Contrast
In analogy to scattering of visible light where differences in
refractive index give rise to scattering, for example air-
material contrast, differences in scattering length density
enable one to “see” material constituents with X-rays and
neutrons. The scattering length density describes the degree
of interaction between the sample molecules and the
incoming radiation and thereby quantifies the scattering
power of different molecular components (see Figures
4A,B). In terms of scattering intensity, the relevant
concept becomes the contrast—the difference in scattering
length density between different components. For X-rays,
contrast arises from variations in the electron density of the
material, and for neutrons the contrast arises from the
different atomic nuclear structures.

The different physical nature of the two methods is
advantageous and complementary in ultrastructural
analysis—SAXS and SANS enable extracting different
structural information from the same sample. The X-ray
scattering power of atoms increases roughly linearly with
atomic number while for neutrons the variation is less
systematic and differs significantly between different isotopes

(Sears, 1992). This isotope difference is particularly important for
biological and soft matter samples, since the exchange of
hydrogen (H) atoms with the heavy-hydrogen isotope
deuterium (D) allows fine-tuning the neutron scattering
contrast, hence called contrast variation. For example, if the
scattering length density of a surrounding medium is equal to
the scattering length density of a specific molecular component,
no scattering is observed from that component—we say that the
scattering has been “matched out.” In its simplest form, mixing
H2O- and D2O-based buffers in specific ratios enables enhancing
or diminishing the contrast of different cellular components
(Serdyuk et al., 2007; Heller, 2010) (Figure 4B). To exemplify,
the contrast variation technique allows an individual
investigation of either lipid or protein components in a
complex biological membrane system. In order to match out
membrane lipids, 5–25% D2O containing solutions are used, and
40–45% D2O containing solutions are used to match out protein
components of the membrane (Figure 4C). So by designing a
series of measurements with varying contrasts, one can effectively
build up a series of structural snapshots which allows to extract
detailed information very hard to obtain in other ways. Part of
such an experimental design is to estimate the scattering length
densities of the sample material; however, calculating precise
scattering length densities for biological systems is not
straightforward, since the exact protein and lipid composition

FIGURE 3 | (A) Illustration of structural model for a photosynthetic membrane system with a stack of double layered thylakoids. Neutron (light blue) and X-ray (red)
SLD profiles are schematically depicted. (B) Full q-range model fits to SANS data from three independent replicas of Synechococcus sp. PCC 7002 [from Jakubauskas
et al. (2019)]. (C) Extracted structural numbers from fits in B.
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of the membrane, their volume fractions, protein H-D exchange
degree, membrane-associated water content, and solvent
composition need to be known. Some recently calculated
scattering length density values of thylakoid membranes are
given in Table 2 (Jakubauskas, 2016; Jakubauskas et al., 2019).

2.3 Small Angle Scattering Analysis
Typical interpretations of small angle scattering data on
photosynthetic membranes have so far been limited to the
estimation of the average thylakoid membrane repeat
distance from the observed peak position by directly
applying Eq. 3. This method provides an approximation of
the average spacing between thylakoid membranes and is
typically used to follow system behavior in changing
conditions: for example, illumination intensity,
temperature, pH, or different ionic strength (see below).
However, a number of factors are not accounted for in
such an approach: interthylakoid space/lumen or
membrane bilayer thicknesses, the number of thylakoid

layers, the degree of system orientation, and, for neutron
scattering in particular, instrument resolution effects.
Therefore, more sophisticated analyses of scattering data
on photosynthetic systems are required. Theoretical
calculations of Kirkensgaard et al. (2009), based on
simulated scattering patterns, suggested a possible route
for further modeling which was recently demonstrated to
provide a framework for the analysis of the full scattering
curve from cyanobacterial membranes (Jakubauskas et al.,
2019). The general equation for the scattering intensity of
particles in solution is

I(q) � Δρ2ΦpVpP(q)S(q). (4)

Here Δρ2 is the contrast of the particles relative to the solution,
Φp the volume fraction of the particles in the solvent, and Vp the
particle volume. The terms P(q) and S(q) are named the form
factor and structure factor, respectively. The form factor describes
the scattering from an individual particle or unit cell, and the
structure factor describes the interactions between these particles/

TABLE 2 | Scattering length densities of thylakoid components [taken from Jakubauskas (2016) and Jakubauskas et al. (2019)].

Neutron SLD, Å−2 X-Ray SLD, Å−2

Lipid headgroups: plants 1.77 × 10–6 1.30 × 10–5

Lipid tailgroups: plants 1.36 × 10–6 1.12 × 10–5

Lipid headgroups: cyanobacteria 1.83 × 10–6 1.19–1.34 × 10–5

Lipid tailgroups: cyanobacteria 1.33 × 10–6 1.12 × 10–5

Thylakoid proteins (10% H-D exchange): plants 2.43 × 10–6 1.22 × 10–5

Thylakoid membrane: cyanobacteria 1.58 × 10–6 1.23 × 10–5

Lumen: cyanobacteria 4.29–4.41 × 10–6 1.15–1.18 × 10–5

Interthylakoid space: cyanobacteria 3.61–4.43 × 10–6 1.16–1.19 × 10–5

Chloroplast average 5.35 × 10–6 9.98 × 10–5

Stroma average 6.34 × 10–6 9.44 × 10–5

D2O 6.393 × 10–6 9.455 × 10–5

H2O −5.61 × 10–6 9.469 × 10–5

FIGURE 4 | (A) X-ray scattering length densities for various molecules. (B) Dependence of neutron scattering length densities of lipid and protein moieties on D2O
amount in the sample. (C) Contrast variation technique, where a photosynthetic membrane is visualized in different D2O buffers. The signal from lipid (5–25% D2O) or
protein components (40–45% D2O) is “masked out.” The total scattering signal is enhanced in 100% D2O, as indicated by more intense colors than in 0% D2O.
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units. The modeling of small-angle scattering data requires either
an educated choice of the precise expression to use for the form
and structure factors or, in cases where such expressions does not
exist, the derivation of them which can be a complicated matter
(Oliveira et al., 2012). The advantage of a full-scale modeling is a
much more detailed idea about the structural organization of the
system. Compared to simply applying Eq. 3, which provides the
overall stacking repeat distance, the data analysis can now also
give information on the internal distribution of distances as
described below and take into account instrument effects and
polydispersity for example. The overall goal of modeling thylakoid
scattering is to construct a mathematical model that incorporates
these parameters and properly reproduces the experimentally
measured scattering curve without undue overparametrization.
As described in detail in Jakubauskas et al. (2019), such a
model is possible to construct and captures the main features of
scattering from stacked thylakoids over basically the full q-range
obtained in a SAXS/SANS experiment.

2.4 A Full Scattering Model
In Figure 3A a structural model for a stacked thylakoid system is
illustrated. A complication in photosynthetic membrane systems
is that the repeating unit is usually not a single bilayer sheet, but a
double bilayer separated by inner and outer liquid compartments,
the lumen and the interthylakoid space, respectively. Thus, the
form factor needs to reflect this organization while the structure
factor should account for the stacking order of these units. In
principle, the form and structure factor are coupled, but for highly
anisotropic systems like the membrane stacks described here they
can be treated separately (Oliveira et al., 2012) as also
demonstrated by simulations in Jakubauskas et al. (2019). The
stacking order of lamellar systems is known to be well described
by the structure factor from Nallet et al. (1993) while the double
bilayer form factor is derived explicitly in Jakubauskas et al.
(2019). As shown in Figure 3A, the form factor is built from a
step model, or “box” model, which is probably the simplest
possible description of the scattering density variation. Other
options include smoother Gaussian variations and multilayer
models (Oliveira et al., 2012). Regardless, the model presented
in Figure 3A can be considered a reasonable first approach of
modeling this complex biological system, and as shown in
Figure 3B, the model fits the data very well. The parameters
entering the form factor equations are all the “local” distances of
the double bilayer structural unit cell, that is, the headgroup,
tailgroup, and lumen heights along with the scattering length
densities of those domains. The structure factor on the other hand
relies on the “global” parameters: the number of layers in the
stack, the overall stacking repeat distance, and finally a measure of
the membrane rigidity. The final intensity is also influenced by
the instrument resolution, inherent sample disorder, and
dispersity in the number of layers of each stacked system,
dispersity in the water layers, etc., all of which affect the
“clarity” of scattering peaks and have to be accounted for. The
output of the fitting routine based on the structural model shown
in Figure 3B is summarized in Figure 3C, showing that the overall
stacking repeat distance is around 60 nm, the average number of
layers in a stack ca. 4, the lumen width ca. 8–9 nm, the membrane

thickness 4–5 nm, and the interthylakoid space size ca. 45 nm.
Finally, from the relative scattering length density levels of the
inner and outer liquid compartments, it is concluded that the
lumenal protein content is higher than that in the thylakoid
membrane, but lower than that of the interthylakoid space.

Despite the reasonable fits to the data provided by the model
presented in Jakubauskas et al. (2019), this is not a universal
answer to scattering analysis from photosynthetic membrane
systems, but it provides one solution. As already hinted above,
one could make other choices for the precise implementation of
the structure and form factors or the implementation of
polydispersity could be done differently. Finally, there are also
inherent assumptions which may turn out to be nonoptimal; one
example is the form factor where the individual bilayers in the
above modeling are assumed to be symmetric which is probably
biologically unrealistic. The combination of next-generation
neutron facilities and optimized sample preparations could
mean that such increased details will become possible to
model and extract in the future.

2.5 Scattering versus Microscopy
Structural studies of photosynthetic membranes are dominated
by microscopy, so we briefly comment on the differences between
such direct imaging methods and the indirect methods provided
by scattering. Electron microscopy allows investigating an
ensemble of individual sample features in Å resolution, but the
statistical analysis of ultrastructures fromTEMmicrographs requires
choosing a number of well-preserved and representative structures
from the sample volume of the order of approximately 5 ×
10–7 mm3. To compare, a relatively large sample volume of
0.1–1mm3 is probed by X-rays or neutrons simultaneously and a
statistical low-resolution structure of the total-volume averaged
system is obtained. Microscopy methods are therefore
complementary to scattering in accounting for sample
heterogeneity, as minute differences of individual structure are
clearly observed. In electron microscopy studies, artifacts from
sample preparation are common due to fixation, dehydration,
and image contrast (Table 3). This is contrary to scattering
methods where the sample is either in a natural state, measuring
directly on a leave for example, or in controlled conditions closely
mimicking or perturbing the natural conditions. Besides requiring a
minimal sample preparation, scattering methods enable a relatively
quick system analysis under near-native conditions and importantly
allows following sample dynamics. The investigation of sample
dynamics on the nanometer length scale in situ is only possible
using scattering methods, as electron microscopy requires sample
immobilization, and light super-resolution microscopy techniques
do not yet provide sufficient resolution (Iwai et al., 2014; Iwai et al.,
2016). Cryomicroscopy techniques allow preserving an in vivo-like
environment, but the investigation of thick samples (e.g., the entire
grana stack (Kouřil et al., 2011) is yet impossible due to method
restrictions and the generally insufficient contrast of membranes.
Although being straight forward to execute in principle, scattering
methods also have challenges. Primarily, obtaining sharp Bragg
peaks on photosynthetic membranes in physiological conditions
(large protein content, required H-D contrast adjustments,
measurements in room temperature, and high osmolarity) can be
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demanding. Large system inhomogeneity smears peaks and burdens
precise structural parameter calculations. Centrifugation, controlled
drying (Kratky et al., 1959; Kreutz and Menke, 1960b; Diederichs
et al., 1985), or application of an external magnetic field (Geacintov
et al., 1972; Sadler, 1976; Nagy et al., 2011; Posselt et al., 2012; Nagy
et al., 2013) can be used to increase internal order of the sample
during the scattering experiment but might complicate modeling
where there typically is an assumption of isotropy and of course also
might alter the natural state of the system. Overall, small-angle
scattering and microscopy methods complement each other, and
their parallel usage is advocated. Complementary investigation of the
same sample with both techniques provides detailed structural
information accounting for sample inhomogeneities (electron
microscopy) and following sample behavior in vivo (scattering).

3 CYANOBACTERIAL THYLAKOIDS

The ultrastructure of thylakoids from cyanobacteria is
characterized by various arrangements of sheet-like membrane
layers subject to the confinement of the surrounding cell wall.
These strain-dependent arrangements are either concentric layers
neighboring the cell periphery or near-radial distributions
emanating from focal points on the cell membrane (Olive
et al., 1997; Rast et al., 2015) (see Figure 1). From TEM data,
the thylakoid repeat distance for Synechocystis sp. PCC 6803

(WT) and photosynthetic mutants is 340–550 Å and 430 Å for
Halomicronema hongdechloris (Liberton et al., 2013b; Li et al.,
2016). In terms of scattering studies, the wild-type strain
Synechocystis sp. PCC 6803 is by far the most studied
cyanobacteria (Liberton et al., 2013a; Liberton et al., 2013b;
Ünnep et al., 2014a; Stingaciu et al., 2016). Liberton et al.
(2013b) recently described neutron scattering on Synechocystis
sp. PCC 6803 and three mutant strains with various degrees of
phycobilisome deficiency (see Figure 5A). In Stingaciu et al.
(2016), Stingaciu et al. (2019), the work was expanded with
inelastic neutron scattering probing the dynamics of the
membranes under different illumination conditions correlating
the membrane mobility with photosynthetic activity. This
analysis indicates a significantly softer membrane under dark
conditions, supporting the result obtained for Chlamydomonas
(Nagy et al., 2014). Finally, Li et al. (2016) recently published a
study on H. hongdechloris where SANS work on the intact cells
complements microscopy work in establishing a structural
understanding of a new cyanobacterial complex showing far-
red light induced decrease of thylakoid repeat distance.

Common in all these SANS studies is that the data analysis and
interpretation are based on peak position readings with no
underlying structural model. The interpretation leans on TEM
images and treats all peaks as the first-order Bragg peaks, which
we will argue in the following to be erroneous. To prove our point,
in Figure 5B we plot the reported peak positions from Liberton

TABLE 3 | Comparison of scattering and microscopy techniques (Schnablegger and Singh, 2013).

Feature Scattering Electron microscopy

Space Reciprocal (inverse) Real (direct)
Resolution Averaged sample details on the nm-scale Local details on the nm-scale
Local structure details Cannot be extracted Can be extracted
Results Representative of the entire sample average Unique, but may not represent the entire sample

Result interpretation is ambiguous Average structures are hard to obtain
Preparation/experimental artifacts Scarce in in vitro experiments Artifacts inherent with chemical fixation

Sample shall not degrade/change during measurement Artifacts scarce for cryofixation methods
Overall cryo-EM contrast is lower than that of TEM

FIGURE 5 | (A) X-ray scattering curves of cyanobacterial systems: Synechocystis sp. PCC 6803 (WT), CB, CK, PAL mutants. (B) Plot of the peak positions from
Liberton et al., 2013b. Circles are data values as reported and diamonds are the q values calculated using the Bragg equation (Eq. 2) with the lowest q value as the first-
order peak.
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et al. (2013b) together with peak predictions calculated from Eq. 2
with the lowest q value taken as the first-order peak, that is,
simply treating the cyanobacterial membrane system as a stack of
thylakoid lamellae. Judging from higher order peak positions,
almost all data points fit with this obvious explanation. The main
outliers are the second-order peaks from the CK and CBmutants,
but on inspection of the original scattering curves there are no
immediately apparent peaks visible, so these particular peak
positions are to be regarded with a high level of uncertainty.
Given the broadness of the peaks, the general noise level in the
biological systems, and the neglect of form factor effects in this
approach, it is hardly surprising that there are some deviations
from a perfect Bragg lattice. Thus, we challenge the correlations
done in Liberton et al. (2013b), where the individual peaks are
interpreted to originate from specific distances in the membrane
to be speculative, as all peaks clearly originate from the
fundamental repeat distance of the lamellar stack which
without invoking a structural model is the only information
available. Nevertheless, two conclusions can be drawn from
the existing cyanobacterial scattering experiments: light
induces a slight shrinkage in the overall lamellar repetition
which is correlated with the size of the antenna system.
Knowing that plant chloroplasts are evolutionarily derived
from cyanobacteria, one might expect a similar behavior of
plant thylakoid membranes.

4 PLANT THYLAKOIDS

The first SAXS experiment on isolated osmium-fixed
Aspidistra chloroplasts (Finean et al., 1953) indicated the
existence of a structure with a repeat distance of 250 Å, and
a similar DR was measured by Kratky et al. (1959) for Allium
porrum chloroplast pellets. Kreutz et al. measured X-ray
scattering of the thin layer of dried chloroplast pellets from
Antirrhinum majus (Kreutz and Menke, 1960a; Kreutz and
Menke, 1960b; Kreutz, 1963b). Isotropic scattering curves with
peaks corresponding to the repeat distances of 177–248 Å,
which putatively occurred from the ordered-layered thylakoid
structure, had been obtained (Kreutz andMenke, 1962; Kreutz,
1964). A wide variation of repeat distance values from early
experiments has been explained by different sample
preparations and different degrees of thylakoid membrane
swelling (Kreutz, 1970). Common in all early works is that
scattering was used to investigate the composition and internal
structure of an individual thylakoid membrane and not
thylakoid membrane stacking. A systematic work trying to
explain thylakoid membrane scattering was conducted by
Sadler et al. (1973), Sadler (1976), on isolated chloroplasts
from Euglena gracilis and spinach using aligned thylakoid
pellets by centrifugation, partial dehydration or external
magnetic field and measured X-ray or neutron diffraction:
four orders of diffraction peaks having a lamellar periodicity of
165–170 Å were observed (Sadler et al., 1973). Complementing
X-rays with neutron scattering experiments in a magnetic field,
Sadler et al. suggested a realistic thylakoid ultrastructure
model with a thylakoid repeat distance of 240–250 Å

(Euglena) or 170–190 Å (spinach) and thylakoid membrane
thickness of 50 Å (Sadler and Worcester, 1982a; Sadler and
Worcester, 1982b). These values are comparable with the
current (cryo-)electron microscopy measurements (Shimoni
et al., 2005; Kirchhoff et al., 2011). Overall, the main outcomes
of early scattering investigations were establishing the protein,
lipid, and pigment arrangement in the thylakoid membrane
(Kreutz, 1970; Sadler and Worcester, 1982b); estimating the
thylakoid membrane thickness (Li, 1978); and providing the
understanding that both the interthylakoid space and
thylakoid lumen are hydrophilic compartments (Sadler and
Worcester, 1982a).

4.1 Isolated Thylakoids
Isolation upconcentrates thylakoid membranes in the sample and
reduces scattering from other plant cell components (i.e., cell wall,
endoplasmic reticulum membranes, etc.), which makes the
sample more pure and the interpretation of the scattering
curve easier. However, an osmotic environment of an isolated
sample differs from the thylakoid environment in vivo. Therefore,
measurements on isolated and in vivo thylakoids are not
equivalent—thylakoids swell in hypotonic (Deamer and
Packer, 1967; Opanasenko et al., 1999) and shrink in
hypertonic solutions (Robinson, 1985; Posselt et al., 2012;
Ünnep et al., 2014b). As shown by scattering experiments
(Finean et al., 1953; Kratky et al., 1959; Kreutz and Menke,
1960a; Kreutz and Menke, 1960b; Posselt et al., 2012; Ünnep
et al., 2014b; Herdean et al., 2016), different sample treatments
yield different thylakoid repeat distances and increased
thylakoid disorder (Sadler and Worcester, 1982b) due to
osmolarity and ionic force-related changes. However, due
to relatively easy and fast measurements, scattering can be
used to improve thylakoid or chloroplast isolation procedures
with the aim of finding buffers where thylakoid membranes
closely resemble the situation in vivo (Ünnep et al., 2014a). For
example, from scattering experiments NaCl is suggested to be a
better osmoticum than sorbitol for thylakoid isolation (Ünnep
et al., 2014a; Ünnep et al., 2014b).

4.2 Plant Leaves
To avoid thylakoid ultrastructure changes due to isolation,
scattering experiments on intact plant leaves have been
performed. In the first SAXS experiment, Allium porrum (leek)
leaves were stacked perpendicularly to the X-ray beam to
suppress cell wall scattering (Kratky et al., 1959; Kreutz and
Menke, 1962). Measuring scattering of both green and variegated
snapdragon leaf parts (Wild, 1957) allowed subtracting
background scattering and obtaining scattering solely from
thylakoid membrane stacks (Kreutz, 1964). SANS
measurements of the yellow part of Schefflera arboricola leaf
or red bracts of Euphorbia pulcherrima, where thylakoid stacking
is either absent or disordered, also did not exhibit scattering peaks
(Ünnep et al., 2014a).

As shown in Figure 6, repeat distance values obtained from
SANS experiments are generally higher than those obtained from
TEM measurements of the same sample (Ünnep et al., 2014b;
Eyal et al., 2017). As discussed in Ünnep et al. (2014b), to improve

Frontiers in Chemistry | www.frontiersin.org April 2021 | Volume 9 | Article 6313708

Jakubauskas et al. Scattering on Photosynthetic Membranes

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


the neutron scattering signal leaves need to be D2O infiltrated,
which might change the thylakoid organization in the leaf.
Slightly expanded thylakoid membranes with D2O-infiltrated
lumen produce a higher contrast and thus can dominate the
scattering, yielding a larger average DR of the scattering peak
(Ünnep et al., 2014a). On the other hand, TEM sample
preparation involves fixation and dehydration, invoking
sample shrinkage. Therefore, DR values in vivo can be larger
than in TEM micrographs.

5 THYLAKOID DYNAMICS

Illumination-induced thylakoid ultrastructure changes are
versatile: both shrinkage and expansion of thylakoid repeat
distance have been observed in different ionic environments
(Deamer and Packer, 1967). Numerous TEM experiments
suggest that thylakoid membranes both in vivo and in vitro
contract in response to illumination; this shrinkage is dark-
reversible, and its degree depends on light intensity
(Murakami and Packer, 1969; Murakami and Packer, 1970a;
Murakami and Packer, 1970b; Sundquist and Burris, 1970;
Miller and Nobel, 1972; Yamamoto et al., 2013; Yoshioka-
Nishimura et al., 2014; Wood et al., 2018). Scattering can also
follow thylakoid stacking repeat distance changes—experiments
on isolated thylakoids show that thylakoid repeat distance
decreases in a matter of minutes when illuminated with white
light intensities up to 1,000 μmol photons m−2 s−1 and is restored
when the light is turned off (Nagy et al., 2011; Posselt et al., 2012;
Nagy et al., 2013); the higher the applied light intensity, the larger
and quicker the DR decrease (Nagy et al., 2013). If illumination
intensity on isolated thylakoids is increased to 2,500 μmol
photons m−2 s−1, thylakoid damage occurs and dark

readaptation after shrinkage is no longer observed (Posselt
et al., 2012). Ultrastructural changes of isolated thylakoids
with uncouplers limiting electron transport and pH gradient
buildup are not observed upon illumination (Nagy et al.,
2013); however, for higher plant thylakoids the role of
uncouplers is less clear, and nonphotochemical quenching is
proposed to take part in light-induced thylakoid dynamics as
well (Ünnep et al., 2020).

Compared to isolated systems, light-induced thylakoid
dynamics in vivo is more versatile and organism dependent.
Several structural outcomes have been observed in plant
leaves: thylakoid expansion (Kirchhoff et al., 2011; Yoshioka-
Nishimura et al., 2014; Tsabari et al., 2015), thylakoid shrinkage
(Miller and Nobel, 1972; Yamamoto et al., 2013; Ünnep et al.,
2014b; Tsabari et al., 2015; Wood et al., 2018; Ünnep et al., 2020),
and simultaneous thylakoid shrinkage and expansion
(Puthiyaveetil et al., 2014; Yoshioka-Nishimura et al., 2014).
Apart from that in plants, thylakoid shrinkage was also
observed in algal Porphyra and Ulva cells in vivo (Murakami
and Packer, 1970a). Light-induced increase of thylakoid repeat
distance was observed in Chlamydomonas (Nagy et al., 2014),
diatoms (Nagy et al., 2012), and cyanobacterial phycobilisome
mutant cells (Liberton et al., 2013a), but no DR change was
observed in Synechocystis sp. PCC 6803 (WT) cells (Nagy, 2011;
Liberton et al., 2013a).

As discussed above, SANS data analysis based on peak position
readings cannot infer lumen height or thylakoid membrane
thickness or their illuminated-induced changes. Therefore,
elucidations of dark–light–dark thylakoid dynamics based
on scattering data (Liberton et al., 2013a; Ünnep et al.,
2020) are so far incomplete. Suitable modeling which
investigates the entire scattering curve behavior is of high
importance to investigate lumen changes and thylakoid
dynamics in general. Furthermore, inelastic neutron
scattering can be used to study dynamics of individual
membranes. An investigation of dark-adapted and
illuminated cyanobacterial thylakoid membrane dynamics
shows that the dark-adapted thylakoid membrane is softer
before its illumination with 100 µmol photons m−2 s−1 white
light (Stingaciu et al., 2016; Stingaciu et al., 2019). From SANS,
thylakoids in Chlamydomonas cells are suggested to exhibit the
same behavior (Nagy et al., 2014). However, an experiment
with a fluorescence probe suggests that spinach thylakoid
membrane fluidity is lower in dark-adapted than in low-
light-illuminated state (Yamamoto et al., 2013), which calls
for a more detailed investigation.

To conclude, the observation of thylakoid (lumen)
shrinkage or expansion is only a single facet of thylakoid
dynamics in vivo and shall not be the sole experimental
purpose, as it depends and is probably governed by
numerous environmental factors. It has been extensively
demonstrated that thylakoid ultrastructure and degree of
thylakoid dynamics in vivo depend on the organism (Nagy,
2011; Liberton et al., 2013a; Ünnep et al., 2014a; Demmig-
Adams et al., 2015; Ünnep et al., 2020), arrangement and
composition of photosynthetic proteins and lipids in the
thylakoid membrane (Demmig-Adams et al., 2015; Mazur

FIGURE 6 | Comparison of repeat distances obtained by SANS and
TEM for isolated thylakoids and plant leaves.
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et al., 2019), “previous-growth-history” of a plant (Demmig-
Adams et al., 2015; Schumann et al., 2017), illumination
spectral quality (Mustárdy et al., 1976; Clausen et al., 2014;
Nagy et al., 2014; Bína et al., 2016; Li et al., 2016; Schumann
et al., 2017; Ünnep et al., 2020), and illumination intensity
(Posselt et al., 2012; Nagy et al., 2013; Yamamoto et al., 2013;
Puthiyaveetil et al., 2014; Wood et al., 2019). Understanding
the interplay of these factors will yield a much more
comprehensive picture of thylakoid dynamics.

6 OTHER ORGANISMS AND
PROLAMELLAR BODIES

6.1 Phaeodactylum tricornutum
Intact marine diatom Phaeodactylum tricornutum cells have
stacked thylakoid membranes, organized in groups of three
(Pyszniak and Gibbs, 1992), although cells cultivated under
low intensity red-enhanced illumination were shown to
increase the number of homogeneously stacked thylakoids
(Bína et al., 2016). In these conditions, large thylakoid
membrane areas are occupied exclusively by densely packed
elliptical PSI-Lhcr supercomplexes. An inhomogeneous
photosystem distribution is proposed for P. tricornutum
thylakoids, where the outer thylakoid lamellae contain more
PSI and ATP synthase complexes, compared to the inner
membranes of the stacks (Bína et al., 2016).

Day-light-grown P. tricornutum cells exhibit a
characteristic scattering profile with two characteristic
diffraction peaks positioned at q � 0.037 Å−1 (170 Å) and
0.065 Å−1 (97 Å) and with a weak peak in between at q
0.052 Å−1 (121 Å) [see Figure 1 in Nagy et al. (2012)]. In
Nagy et al. (2012), the latter is tentatively assigned to
adjacent membrane pairs while no account of the weak
central peak is given. In line with the above statements, we
conjecture that a full modeling approach accounting for the
distinct triplet organization and the possible asymmetric
composition of the membranes will account for the full
scattering curve.

Nevertheless, qualitative information can still be extracted.
Upon white light illumination (150 or 1,200 μmol photons
m−2 s−1), q of the peak decreases, indicating an expansion of
the stacking—the higher the light intensity, the higher the
expansion. This illumination effect was reversible and could
not be inhibited by uncouplers, suggesting that thylakoid
dynamics are caused by changes in the electrostatic
interactions of local electric fields and/or constitutive
redistribution of the ions—and not due to pH changes, as in
the case of isolated thylakoids (Zimanyi and Garab, 1989). As
discussed, light-induced thylakoid expansion in live cells is
similar to the thylakoid membrane behavior in intact
Arabidopsis leaves, which strongly supports the need to
analyze thylakoid membrane behavior in a variety of organisms.

In line with experiments on isolated thylakoid membranes,
q-values of the peaks increase after addition of 100–600 mM
sorbitol whereas peak intensity decreases—indicating thylakoid
membrane shrinkage in higher osmolarities. Osmoticum-

induced shrinkage is reversible—if sorbitol is removed,
scattering signal intensity of the first peak is restored, although
the intensity of the second peak remains lower. After dark
readaptation q of the two peaks even decrease to slightly
lower values than of nontreated cells, indicating a slight
thylakoid membrane swelling during readaptation (Nagy
et al., 2012). Similar thylakoid membrane shrinkage is also
observed after heat treatment of P. tricornutum cells: the entire
SANS profile shifts to higher q values and peak intensities are
decreased.

6.2 Chlamydomonas reinhardtii
Single-cell green algae Chlamydomonas contain well-defined
separate regions of stacked and unstacked thylakoid
membranes with distinct protein contents and supramolecular
structures. Chlamydomonas is an attractive organism to study
thylakoid ultrastructure and dynamics in vivo, especially
because of state transitions. Although Chlamydomonas
thylakoids are organized less regularly (Engel et al., 2015),
distinct regions with predominantly grana-like stacks or
stroma lamellae are present—an overall organization similar
to higher plants, although with a lower number of lamellae in
the stacks. From tomography experiments, Chlamydomonas
thylakoid stacks are composed of 3–10 thylakoids, which have
a lateral repeat distance of 224 ± 13 Å. A single thylakoid
membrane thickness is 49 ± 5 Å, thylakoid lumen thickness
90 ± 14 Å, and interthylakoid stromal space 36 ± 5 Å (Engel
et al., 2015). From SANS experiments, living Chlamydomonas
cells exhibit a scattering profile with two characteristic
diffraction peaks corresponding to q 0.033–0.0035 Å−1

(180–190 Å) and 0.055 Å−1 (114 Å). The first peak/feature is
proposed to originate from the repeat distance of stacked
thylakoid membranes and the second from the membrane
pairs (Nagy et al., 2014). If so, the repeat distance obtained
from SANS correlates well with electron tomography data,
although the overall appearance of the scattering curve is
currently not accounted for and needs to be investigated in
more detail to clarify if the offset of the peaks from a lamellar
pattern is not simply an effect of the form factor and the low
number of layers.

6.3 Prolamellar Bodies
We will finish this excursion of scattering work on
photosynthetic membranes by returning to the plant
prolamellar bodies (PLBs) illustrated in Figure 1A. In
contrast to all the other membrane systems described so
far, prolamellar bodies are not flat sheet stacks so the
modeling approach from Jakubauskas et al. (2019)) is not
relevant directly. Instead, the analysis of the scattering
requires one to index peaks based on symmetry
considerations akin to the analysis routinely performed in,
for example, lyotropic liquid crystalline systems. Lachmann
and Kesselmeier (1989) classified the isolated PLB
ultrastructures according to their internal structure as
paracrystalline, spongy, or tubular. Paracrystalline PLBs
are well organized and ordered; spongy PLBs maintain
elements of the original lattice, but their long-range order
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is lost; tubular PLBs have tubules from the original structure,
but PLBs look torn apart, with no apparent order.

X-ray scattering on isolated PLBs was successfully
employed by P. Williams and E. Selstam, when they
isolated PLBs and used them for parallel SAXS and TEM
studies (Williams et al., 1998; Selstam et al., 2007). Judged
from TEM pictures, 70–80% of isolated PLBs in the samples
were paracrystalline, the remaining PLBs were spongy, with a
very low numbers of tubular PLBs or membrane debris from
damaged PLBs, although the latter did not interfere with
X-ray scattering from highly ordered PLB structures.
Concentrated PLB pellets gave rise to X-ray diffraction
patterns resembling a Fd3m lattice with unit cell length
a � 78 nm (see Figure 7). Scattering was then used to
study PLB ultrastructure changes with focus on the impact
of salts, cryoprotectant, pH, and freeze–thaw cycles
(Williams et al., 1998; Selstam et al., 2007). Although
promising in essence, PLB studies proved to be technically
difficult—mainly, a robust etiolated plant growth setup and
sample preparation are necessary to obtain homogeneous
PLB preparations for the scattering measurements.
Furthermore, to investigate PLB ultrastructure, the sample
enclosure itself needs to be light impermeable and the sample
needs to be loaded into it under a very low intensity green

light, as 1 ms flash of white light can be sufficient to destroy
the paracrystalline order of the PLB. One of the possible ways
to tackle the issue of PLB sample resolution is the usage of
neutron scattering. Here, scattering from lipids is enhanced if
isolated PLBs are resuspended in D2O-based medium.
Furthermore, as is the case for thylakoids, scattering of
fresh etiolated and D2O-infiltrated leaf stack can be
investigated. Since the neutron beam is in most cases
larger than that with X-rays, lower concentration of PLBs
in the leaf can be compensated by the higher screened sample
area and leaf stacking, putatively leading to a comparable
signal intensity as for concentrated PLBs investigated by a
small X-ray beam. Such an experiment does not require any
special sample preparation—PLBs can in principle be
investigated in in vivo conditions, directly in ethiolated
leaves, thus yielding more precise average unit cell values
and space group assignment. Ultimately, PLB ultrastructures
from various plants and photosynthetic mutants can be
investigated and compared, as in Bykowski et al. (2020),
and a continuous light-induced PLB disassembly can be
ideally followed as well.

7 OUTLOOK

Here we have presented an overview of scattering results
obtained so far on photosynthetic membranes and advocate
for a holistic modeling approach to scattering data as well as
the joint utilization of the complementary methods of
scattering and microscopy/tomography to study biological
samples as close to their native state as possible. Ideally, a
study of high biological relevance could investigate
thylakoid dynamics in plants with different degrees of
thylakoid stacking and diverse photosynthetic and
environmental phenotypes: photosynthetic, pigment, or
antennae-deficient mutants, draught, and cold-resistant
species. Systematically varying white light intensities and
using certain wavelengths, causing state transitions in
illumination studies, would enable studying the
photosynthetic response and changes in thylakoid
ultrastructure and evaluating small-scale dynamics of
thylakoid membranes, which would greatly benefit
biological investigations in plants and cyanobacteria.
Furthermore, the entire PLB-to-thylakoid membrane
transition could in principle be followed with scattering
experiments, which is one of the most spectacular
membrane remodelings known in biology.

To conclude, we believe scattering techniques will
ultimately enable one to investigate, follow, and model
ultrastructural changes of complex biological membrane
systems in their native environment in near-second range.
In complement to “static”microscopy techniques and together
with the fact that comprehensive mathematical models
explaining scattering data from complex systems are
underway, an advent of new discoveries using scattering
methods on complex biological system dynamics is
anticipated.

FIGURE 7 | SAXS pattern changes after single freeze–thaw cycle of
prolamellar bodies. (A) Prior to freezing (thin line) and immediately after melting
(thick line). (B) Difference between curves from (A) indexed to a Fd3m lattice
[figure from Selstam et al. (2007)].
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