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Patchy particles by self-assembly of star
copolymers on a spherical substrate: Thomson
solutions in a geometric problem with a color
constraint†

Tobias M. Hain, ab Gerd E. Schröder-Turk *abc and
Jacob J. K. Kirkensgaard *c

Confinement or geometric frustration is known to alter the structure of soft matter, including

copolymeric melts, and can consequently be used to tune structure and properties. Here we investigate

the self-assembly of ABC and ABB 3-miktoarm star copolymers confined to a spherical shell using

coarse-grained dissipative particle dynamics simulations. In bulk and flat geometries the ABC stars form

hexagonal tilings, but this is topologically prohibited in a spherical geometry which normally is alleviated

by forming pentagonal tiles. However, the molecular architecture of the ABC stars implies an additional

‘color constraint’ which only allows even tilings (where all polygons have an even number of edges) and

we study the effect of these simultaneous constraints. We find that both ABC and ABB systems form

spherical tiling patterns, the type of which depends on the radius of the spherical substrate. For small

spherical substrates, all solutions correspond to patterns solving the Thomson problem of placing

mobile repulsive electric charges on a sphere. In ABC systems we find three coexisting, possibly different

tilings, one in each color, each of them solving the Thomson problem simultaneously. For all except the

smallest substrates, we find competing solutions with seemingly degenerate free energies that occur with

different probabilities. Statistically, an observer who is blind to the differences between B and C can tell

from the structure of the A domains if the system is an ABC or an ABB star copolymer system.

1 Introduction

The self-assembly of linear diblock copolymers and their phase
diagram is nowadays well understood.1–3 By contrast, the study
of the phase behaviour of more complex copolymer architec-
tures, like grafts or stars,4 remain incomplete, due to the larger
parameter space and, hence, a larger variety of possible
structures.2,3,5–7 Here we consider ABC 3-miktoarm star ter-
polymers, henceforth called ABC star copolymers. These are
copolymers which consist of three linear chains connected at a
central grafting point,3,4,8,9 as shown in Fig. 1 or Fig. 2. These
star copolymers can be synthesized so that the three arms are
immiscible; herein we refer to the three polymeric species as
colors: blue, yellow and red. When this immiscibility drives the

Fig. 1 Polymeric self-assembly of ABC and ABB star copolymers on a
spherical substrate. Top panel: Schematic visualization of coarse grained
models of ABC and ABB star copolymers used for the DPD simulations.
Bottom panel: Snapshots of simulations comprising ABC and ABB star
copolymers. Polymer arms of identical color agglomerate into patches. The
ABC system creates a three colored tiling of the sphere, whereas the ABB
system builds a single tiling made up of only A-type patches in a B-type matrix.

a College of Science, Health, Engineering and Education, Mathematics and Statistics,

Murdoch University, 90 South Street, 6150 Murdoch, Western Australia, Australia.

E-mail: G.Schroeder-Turk@murdoch.edu.au
b Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124,

221 00 Lund, Sweden
c Department of Food Science, University of Copenhagen, Rolighedsvej 26,

1958 Frederiksberg, Copenhagen, Denmark. E-mail: jjkk@food.ku.dk

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sm01460h

Received 18th July 2019,
Accepted 29th September 2019

DOI: 10.1039/c9sm01460h

rsc.li/soft-matter-journal

Soft Matter

PAPER

http://orcid.org/0000-0001-7964-683X
http://orcid.org/0000-0001-5093-415X
http://orcid.org/0000-0001-6265-0314
http://crossmark.crossref.org/dialog/?doi=10.1039/c9sm01460h&domain=pdf&date_stamp=2019-10-08
http://rsc.li/soft-matter-journal


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 9394--9404 | 9395

moieties to micro-phase separation, the arms of equal species
will agglomerate into domains, which will self-assemble into
complex structures. Considerable amount of work has been put
towards the investigation of one type of these structures: columnar
phases whose cross-sections are planar tiling patterns.10–20

A distinguished and important feature of ABC star copolymers is
that all structures arising from these molecules must be compatible
with the special architecture of the latter:

1. The grafting points form triple lines13 where three different
domains meet, which, in cross-section, corresponds to vertices of
the tiling pattern.

2. Any given patch of a given color (e.g. yellow), must be
surrounded by an alternating sequence of patches of the other
colors (e.g. blue and red). The number of these surrounding
patches must then be even.12

For more details see Fig. 2. In this article we will refer to
constraint 2 as the color constraint.

If the star copolymers are chosen symmetrically, i.e. all arms
have equal length, and with equal interaction strength between
the arms, a hexagonal columnar phase is formed where a cross
section perpendicular to the columns yields a planar 3-colored
honeycomb pattern which we here consider as the ‘ground
state’ of the system.10–13,16,19,21 The hexagonal tiling can be
tuned into a large variety of tilings by varying the length of one
of the three arms.10,12,19 However, all these tilings consist of
vertices of order three only, which is enforced by the molecular
architecture of the star copolymers.

Apart from changing the chemical composition or interactions
of the polymers, another way to tune structures is by geometric
confinement. A simple analogy illustrates this fundamental geo-
metric concept: the peel of an orange for example cannot be
confined to a flat plane, without tearing or deforming it. This also
applies for the star polymers: the optimal free energy configuration
they form in the plane, the regular honeycomb, cannot be fitted on
a spherical substrate without distorting the planar pattern.

Unlike the restriction of polymers to a thin film, the con-
finement to curved geometries, like spheres, does not only
impose the constraint of physical confinement onto the polymers,

but also introduces curvature to the system. This alters the shape
and structure of the space available to the polymer melt which can
enforce or prohibit some structures to form. Such curvature-related
effects have been described for multiple self-assembly systems.

Several articles report on the influence of curvature on
hexagonal particle orders on surfaces with positive and negative
curvature, both using experiments22–27 and simulations.24,28,29

Two dimensional tilings can be created from these particle
assemblies by assigning each particle a polygon where the
number of edges coincides with its coordination number, which
is the number of neighbouring particles. This process is equivalent
to computing a Voronoi diagram of the particles. While these
particles would arrange in a hexagonal order in a plane, and
therefore, form a perfect hexagonal tiling, defects in this patterns
were found after the particles self-assembled on curved surfaces.

Zhang et al.30 found similar defects in the self-assembly of
AB diblock copolymers confined to a spherical substrate using
numerical methods to solve the Landau–Brazovskii theory. For
cylinder forming diblocks, the cylinders distributed over the
surface of the sphere in a generally hexagonal order, however,
5-fold defects were found. For larger systems, scars of connected
5- and 7-fold defects occur. These scars were previously found
by Chantawansri et al.31 in their studies about AB diblock
copolymers on spherical substrates using SCFT. They further-
more found that the number of cylinders depends on the radius
of the spherical substrate.

These defects have a fundamental mathematical origin: the
different topologies of the confining surface. Each tiling and
polyhedra (and topological equivalents) have an intrinsic property,
the Euler characteristic w, describing its topological type.32–34 An
Euler characteristic of w = 2 corresponds to an object that is a
single component without any handles or cavities, such as the
sphere. A given tiling can only tessellate a surface of the same
topological space, therefore surfaces having the same Euler char-
acteristic as the tiling.33 A planar, periodical hexagonal tiling has
w = 0, as does a torus. Therefore the hexagonal tiling can be
mapped onto the latter. When a hexagonal lattice is forced onto an
incompatible curved surface, as for example a sphere with w = 2,
the mismatch leads to ‘geometric frustration’: the hexagonal lattice
is incompatible with the topology of the substrate. To cope with
this incompatibility defects occur in the hexagonal order.

To check if a tiling is compatible with a sphere, Euler’s
formula can be used, which reads in case of a sphere:32,34

w = V � E + F = 2 (1)

where V, E, F is the number of vertices, edges and facets in the
tiling. If a tiling fulfills this condition, it can be mapped onto a
sphere without defects. In our case, where tilings are generated by
ABC star copolymers, the color constraint can be incorporated into
eqn (1). Since only vertices where three edges meet are allowed,
each edge is shared by two and each vertex by three facets (see also
Fig. 2). In this case, eqn (1) can then be expressed in terms of the
number of polygons in the tiling:

w ¼
X
i

i � ni
3
� i � ni

2
þ ni

� �
¼
X
i

1� i

6

� �
ni ¼ 2 (2)

Fig. 2 Structural constraints imposed by polymer architecture: the color
constraint. Left panel: Since the three different polymer arms making up
domains are bonded at a central junction bead (grafting point), the latter must
sit on points or lines where three different domains meet so that each arm may
extend in a domain of its species. Right panel: For tiling patterns, this results in
the so-called color constraint: only polygons with an even number of edges are
allowed, where the types of all adjacent polygons alternate. The figure illustrates
this: if a polygon with an uneven number of edges is attempted to be formed, a
new interface (dashed line) and grafting point (red point) is introduced by the
architecture of the stars, resulting in an even polygon.
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where ni is the number of polygons with i edges in the tiling. This
equation easily shows that a hexagonal tiling is incompatible,
since the term in the brackets equals zero for i = 6. Therefore
polygons with a different number of edges need to be introduced
to fulfil the equation. One solution to eqn (1) for the sphere is the
arrangement of 12 pentagons to an icosahedron. Since the left side
of eqn (1) vanishes for hexagons, an arbitrary number of the latter
can be added to the 12 pentagons and the topology will not
change. A well-known configuration is the soccer ball, consisting
of 12 pentagons and 20 hexagons. Apart from investigations of
particles from polymer systems, abstract systems with topological
defects were investigated analytically.33,35–37 Here the behavior of
abstract disclinations from the crystalline state, for example
particles with 5 neighbours in an otherwise hexagonal lattice,
was investigated using free energy calculations. The results agree
with the results found in the physical particle and polymer
systems: the favoured state are 12 5-fold disclinations, also the
above mentioned scars (connected disclinations) are found.

A very prominent problem of ordering on a sphere is the
so-called Thomson problem. It was formulated by J. J. Thomson
in 1904 in the context of his atomic model. The Thomson
problem is the search for the minimal energy configuration of
n repelling electrons, all of the same negative charge �e, on a
spherical surface.38 The resulting arrangement of electrons and
their symmetries39–43 has been found in many seemingly
unconnected problems, as for example in the design of protein
virus capsides,44–46 the construction of fullerens and nano-
tubes,47 in more generalized Thomson problem versions,48

but also in connection with polymeric self-assembly where it
was stated that the cylinders in the cylindrical phase of AB
diblock copolymers on a spherical substrate arrange on the
sphere as particles in the Thomson problem would.31 To reach
the minimal energy solution, the optimal coordination number
of a single electron is six, however, due to the geometric
frustration defects in the hexagonal order must occur, as
explained above.49 For our system, it is useful to interpret the
electron positions of the Thomson problem solutions as vertices
of a polyhedra. The graph of its dual polyhedron is a tiling of the
sphere, where each electron is assigned a tile whose number of
edges is equivalent to the coordination number of the corres-
ponding electron. A solution of the Thomson problem, henceforth
called a Thomson solution, can therefore be described and labeled
by its dual lattice, see Table 1.

In conclusion, using ABC star copolymers confined to a spherical
shell as a model system enables the simultaneous study of two
different constraints: geometric frustration and the influence of
the color constraint. To investigate the effects of each on their
own, a strategy is needed to switch one of them on and off. This
is accomplished by using two different kind of star molecules,
the aforementioned ABC stars and ABB star molecules, see right
panel in Fig. 1. These only differ to the ABC stars in that two
arms are of the same species. Thus the color constraint can be
eliminated, since the grafting points of the ABB stars can move
freely across the interface between A and B type domains. The
A type domains, which are the tiles in the resulting tiling, can
then freely move around in a B type matrix.

2 Methods
2.1 Dissipative particle dynamics of star copolymers

Dissipative Particle Dynamic (DPD) simulations are used to
find equilibrium configurations of the polymer systems. DPD
simulations50,51 are a type of molecular dynamic simulations
designed for coarse grained models of molecules, which makes
it a natural fit for polymer melts.11,21,52,53 As all molecular
dynamics simulations, the DPD method is based on the for-
ward integration of Newton’s equation of motion in time for
each particle i:

d2xi

dt2
¼ 1

m
� Fi

In our case, a particle is a single bead in the polymer arms (see
Fig. 1), where each bead may represent many atoms. A sym-
metric star copolymer then consists of a center particle with
three connected arms, each consisting of a chain of bonded
particles. A schematic representation of such a coarse grained
polymer is shown in Fig. 1.

We use the simulation package HOOMD-BLUE54–56 to perform
our simulations. We will only briefly discuss the parameters used
at this point, for details on the implementation we refer to ref. 57
and the documentation of the HOOMD-BLUE package.58 In this
simulation package all units are given based on three reference
units (distance D, energy E and mass M) which can be chosen
arbitrarily. All other units, for example a force, can be derived
from these units, for more details we refer to the HOOMD-BLUE
manual.58 In the course of this article, all given values are given in

Table 1 Solutions of the Thomson problem for systems with up to 12
electrons described as spherical tilings. The table shows the number of
n-gons and the Schläfli symbol for the dual lattice of a solution of a
N-electron Thomson problem. A Schläfli symbol12,69,70 is a set of l
numbers [k1,k2,. . .kl] denoting that a vertex is adjacent to l tiles with kl

edges respectively (see also right pane in Fig. 5). The Schläfli symbol for an
entire tiling just lists all different types of occurring vertices, see Fig. 5. The
symbols to the left relates to the textures in Fig. 6

N Schläfli symbol

Number of tiles with

1 2 3 4 5 6
Edges

2 [1.1] 2

3 [2.2.2] 3

4 [3.3.3] 4

5 [3.4.4] 2 3

6 [4.4.4] 6

7 [4.4.5] 5 2

8 [[4.4.5], [4.5.5]] 4 4

9 [[4.5.5], [5.5.5]] 3 6

10 [[4.5.5], [5.5.5]] 2 8

11 [[4.5.5], [4.5.6],
[5.5.5], [5.5.6]] 2 8 1

12 [5.5.5] 12

Non-Thomson

Invalid
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terms of these reference units unless stated otherwise. The
package implements the DPD method following the formulation
of ref. 51 and 57. Here the force on particle i is given as

Fi ¼
X
iaj

FC
ij þ FD

ij þ FR
ij

� �

where the sum is over all particle pairs within a cutoff radius
rc = 1 around the i-th particle. The force consists of three
contributions: a conservative force FC

ij representing the repulsive
interactions between the particles, a dissipative force FD

ij and a
random force FR

ij. The latter two act as a thermostat to keep the
temperature of the system constant. Since a thermostat is a built-
in feature of the DPD interactions, the system is technically
advanced as a NVE ensemble using a standard velocity-
Verlet step algorithm, although it is effectively a NVT ensemble.
The conservative force is 0 only for rij Z rc and is otherwise
given by

FC
ij ¼ aij 1� rij

rc

� �
r̂ij (3)

where aij is the maximum repulsion between two particles and
therefore a measure of the interactions strength, rij = ri � rj and
r̂ij = rij/|rij|. The interactions between two particles of the same

species is given as aii ¼ 75
kBT

r
, where r is the number density

and kBT the temperature in the polymer melt. The interaction
parameters can be mapped onto the well established Flory–
Huggins interaction parameter wij

59,60 used in polymer science
using aij = aii + 3.268wij.

61 We use values of aii = 25 and aij = 40
that, at a temperature of kBT = 1 and a particle density of r = 3,
corresponds to wij E 4.6. With an armlength of 8 beads per arm,
this gives wN E 74. Due to the many parameters and complexity
of a star copolymer melt, parameters for an order–disorder
transition are barely existent in the literature. However, a value
of wN E 74 is well above the order–disorder transition for diblock
copolymers2 and as high as values used in other studies of ABC
star copolymers5,19 and thus in the strong segregation limit. As a
measure of the stretching of the polymer molecules the radius of
gyration62 is provided in the ESI.†

The single beads of the polymer chains are bonded by a

harmonic potential, given as VHðrÞ ¼
1

2
k r� r0ð Þ2, where k measures

the strength of the bond and r0 the bond rest length. In our system

we chose k ¼ 4
E

D2
and r0 = 0.88D as the position of the first peak

of the pair correlation function in a system of unbonded,
identical particles with the given interaction parameters. Each
arm in the polymers consists of 8 beads.

The confinement of the system to a spherical substrate is
modelled as follows: the simulation volume is a spherical shell
bounded by two repulsive spherical walls interacting with the
polymers with a purely repulsive Lennard-Jones potential:

VLJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
þ DV

where r in this case is the length of the vector from the particle
perpendicular to the wall, not to be confused with rij, the

pairwise distance between two particles, see Fig. 3. DV ¼
� r� rcutð Þ@V

@r
rcð Þ � VLJ rcð Þ and s is the range of the repulsive

potential, e would be the strength of the attractive part of the
Lennard-Jones potential, however, is of no relevance in the
purely repulsive version used here. While the outer wall exerts a
force towards its center, the forces of the inner wall acts
outwards. Hence, the wall keeps all particle inside the spherical
shell they enclose. We choose s = 1D and set the cutoff of the

wall potential to rc ¼ 2
1
6s to cut the attractive tail.

The spherical walls are concentric around the origin with
radii of Ri = R � dR/2 � s and Ro = R + dR/2 + s, the shell
therefore has a thickness of dR, as shown in Fig. 3. The amount
of curvature forced onto the system can then be tuned by
varying the radius of the spherical shell. The initial position
of the centers of the stars are chosen inside the simulation
volume from a uniform distribution. The arms are then placed
at random positions around the center. In order to achieve a
well mixed configuration the system runs 5.5 � 105 time steps
where the interaction parameter between any species of particles

is set to aii ¼ aij ¼ 25
E

D
. After this warmup phase the parameters

are set as stated above according to their species. The temperature
of the system was kept constant at kBT = 1 for the entire run. All
simulations have been run with time steps of Dt = 0.005 and ran at
least 3 � 108 time steps, larger systems with R 4 8D ran 5 � 108

time steps. After these long runs we assume that an equilibrium is
reached, which is confirmed visually in random samples. The radius
R of the spherical shell was varied with R = 4, 5, 6, 7, 8, 9, 10D with a
shell width of dR = 2. Alternating the radius has two effects: (1) due

to constant a number density of r ¼ 3
1

D3
the number of molecules

increase with a larger shell volume; (2) the curvature of the shell
decreases with increasing radius. For each radius 20 configurations
for each ABC and ABB systems were simulated with different
random initialisations for statistical significance.

Fig. 3 Simulation setup and substrate model. Left panel: Schematic
sketch of a cross section of the simulation setup. The two black, bold
circles represent spherical, repulsive ‘Lennard-Jones walls’ with radii of

Rþ dR

2
þ s and R� dR

2
� s. As shown, the outer wall exerts a LJ-force on a

particle along a vector perpendicular to the wall towards its center. The
force of the inner shell acts outwards. Together these walls confine the
polymers to a shell of thickness dR. Right panel: Cross section through a
simulation snapshot with radius R = 8D with the same quantities marked.
The image shows the homogeneity of structure in the radial direction of
the shell and gives an idea for the scale of the system.
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2.2 Structure analysis of tiling patterns

When the simulation is deemed to be equilibrated, the resulting
spherical tilings are recovered from the polymer configurations
using Set-Voronoi diagrams63 as implemented in pomelo.64 The
aim is to substitute a domain in the system with a polygon,
representing a tile, where the number of edges of the latter is
equal to the number of neighboring domains.

In the ABB systems we characterize the structure of the A
beads, considering the B particles as a matrix. We use a cluster
algorithm (implemented in the trajectory analysis package
freud65) to identify all A domains. This provides a list of N
clusters, one for each A type domain, each with a list of which
particles it is made from. Then the Voronoi diagram of all A

type particles is computed, where all cells of particles belonging
to the same cluster are merged, leaving one cell per cluster. The
number of neighbors for each domain are determined from the
number of adjacent cells sharing a common edge. The spherical
tiling is recovered by representing each domain by a polygon
which number of edges equals the number of neighbors.

For the visualizations of the tiling shown in Fig. 5 and 7, the
vertices of a tiling are placed at the vertices of the Voronoi cells
of the patches. The edges connecting vertices are great circle
segments. Fig. 5 shows a simulation snapshot on the left and a
representation of the spherical tiling in the middle. We obtain
2D topological representations of the tilings through the
Mercator projection as used in.30 Each point on the sphere
given in spherical coordinate angles (y,f) with y A [�p/2,p/2]
and f A [0,2p] is mapped in the Cartesian plane by x = Rf and

y ¼ R ln tan
p
4
þ 2

5
y

� �� �
. An example of such a projection is

shown on the right hand panel of Fig. 5. In these representations,
the plot has periodic boundary conditions in the x direction,
however, not in y direction. The top and bottom tiles therefore
are not adjacent, but represent the tiles at the poles of the sphere.
The purpose of the planar projections is to correctly capture the
topology and neighbor relations, not the geometry, which is
deformed in the projection.

In order to make direct comparison to the single-colored
tilings from ABB systems to tilings from the ABC systems possible,
instead of constructing a three-colored tiling were edges would
follow the inter-domain interfaces (see right panel in Fig. 4), we
analyse each of the three species in the latter individually, treating
the respective other two domains as the matrix, and apply the
same analysis as above. That is, to analyse A, we consider B and C
indistinguishable and to represent the matrix and so on. From
each ABC system three single-colored tilings from the A, B and C
type domains are obtained, as can be seen in Fig. 7. In these
single-colored tilings the vertices are not restricted to triple-lines
and the edges do not correspond to inter-domain interfaces as is

Fig. 4 Two different methods for the analysis of tiling patterns in an ABC
system using Set-Voronoi diagrams. Right: Patches of all colors are used to
generate a single, three-colored, spherical tiling for a single ABC system.
Here the vertices are located at triple lines where three different colors
meet and the edges correspond to inter-domain interfaces. The color
constraint applies directly to the tiling. Left: Only the patches corres-
ponding to a particular polymeric type X (= A, B, or C) are considered in the
tiling analysis, creating a single colored tiling (the image is for X = B, red).
The same could be done with the other two colors, yielding in total three
single-colored tiling for each ABC system. Note that the color constraint
does not apply directly onto this single-colored tiling, i.e. uneven numbers
of edges are possible, however the frustration on the polymer system still
applies. This single-color analysis allows direct comparison to tilings
generated in ABB systems, see e.g. Fig. 5.

Fig. 5 Spherical tilings from polymeric self-assembly on a spherical substrate. Left panel: A simulation snapshot of an equilibrated ABB star copolymer
melt confined to a spherical shell. The A-type arms have assembled into six domains, which arranged in a cuboidal symmetry in the B-type matrix. Middle
panel: The spherical tiling recovered from the polymer system. Each face in the tiling corresponds to a blue domain in the simulation snapshot as labeled.
Right panel: A modified Mercator projection of the spherical tiling, labeled with the corresponding tiles on the sphere and the domain in the simulation
snapshot. Each vertex is labeled with its Schläfli symbol, the union of all types of distinctive vertex labels gives the Schläfli symbol of the entire tiling, as
shown vertically on the far right. In order to be comparable, all tilings are rotated so all tilings of a type have the same orientation. The gray axis in the
middle panel indicates the orientation of the red, dashed line in the projection in 3D.
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the case in ABB systems, see Fig. 4. Although this single-color
analysis seems to lift the color constraint of these tilings, i.e.
polygons with an uneven number of edges are possible, this is a
purely virtual aspect of the analysis and the frustration still
applies on the polymer systems.

Tilings are labeled using Schläfli Symbols, see caption of
Table 1 for details. All simulation screenshots were made using
the Tachyon render66 in VMD,67 the renderings of the tilings
were created using a custom script in BLENDER.68

Every 1 � 106 simulation step, a snapshot of all particles was
made, which results in 300 frames over the simulation time.
The statistics shown in the result section include all tilings
from the latest 15 frames of the simulation to account for
invalid simulation frames. Since 20 independent runs were
made for each radius, 300 frames were analysed for both the
ABC and ABB systems. In the ABB system, this provides
300 spherical tilings, in the ABC system 900 tilings, since there
are three colors in each frame. Note, however, that the ‘‘real’’
statistics are only based on 20 different runs for each polymer
type and radius, since the tiling in the last 15 frames of each
run are assumed to be equilibrated and therefore is not
expected to change.‡

3 Results and discussion

We find the following key features:
� For spherical substrates with R o 8 all tilings generated by

both the ABB and ABC systems are identical to tilings generated
from Thomson solutions, see Fig. 6. Only for radii R Z 8, we
observed simulations of ABC systems which were not Thomson-
type solutions (see below). In ABB systems we only found
Thomson solutions.
� For R 4 4, instead of a single equilibrium solution, we find

a spectrum of configurations, see Fig. 6. Within our analysis,
these appear as degenerate (or nearly degenerate) configurations
that occur with statistical frequencies.
� The analysis of the three single-colored tilings of an ABC

system shows that they each individually form Thomson solutions,
but not necessarily of the same tessellation type, see Fig. 7.
� The resulting tilings can be tuned by varying the radius of

the sphere where the ABC star copolymer system shows a
different behaviour in the frequencies of the tilings than the
ABB star copolymer systems, see Fig. 6.

To start our discussion we single out the R = 8 systems to
illustrate the key results. Out of the 300 frames in the ABB

systems with R = 8, we find the majority of frames (about 95%)
to have 6 tiles in a [4.4.4] configuration, only a very small
proportions of 5% has 5 tiles in a [3.4.4] tiling. Both of the
configurations are identical to tilings generated by Thomson
solutions. The ABC case is slightly more complex: out of the
900 analysed tilings, we find only about 14% of the configuration
with 6 tiles in a [4.4.4] tiling, 47% with 7 tiles in a [4.4.5] tiling, about
31% with 8 tiles in a [4.4.5, 4.5.5] tiling and 6% with 9 tiles as a
[4.5.5, 5.5.5] configuration. As in the ABB systems, all of these are
identical to tilings from Thomson solutions. Only about 1% of the
tilings were found to differ from the Thomson solution tilings.

While for R = 8 the ABB system overwhelmingly forms the
same type of tiling, the ABC misses this feature. We find this
behaviour across most of the other systems on different radii:
all of the ABB systems form at least two different tilings for each
radius, the R = 9 system even three, however, all are Thomson
solutions. All ABC systems show at least three different tilings
for each radius, again almost all of them are Thomson solutions.
We find exceptions for the R = 4 spheres, where for both systems
only a single type of tiling is found and the ABC system for R = 7,
where although three different tilings are found, the majority
(86%) of analysed frames forms only one type. Another exception
are larger ABC systems, where we find an increasing number
(E1% for R = 8, E12% for R = 9, E44% for R = 10) of tilings not
connected to the Thomson problem. However, we do see these
percentages go down as the simulations are running for longer
times so we conjecture that eventually all non-Thomson solutions
might anneal out.

Since the free energy levels of different tilings is a function
of the sphere radius, as will be discussed later, this may allow
the conclusion that the energy levels are almost degenerate for
the majority of the combinations of the chosen star copolymers

Fig. 6 Equilibrium configurations of self-assembly of star copolymers on
a spherical substrate. Results of multiple runs of the self-assembly of ABB
(top) and ABC (bottom) star copolymers on a spherical substrate of radius
R. Each color denotes one type of tiling, as labeled in Table 1. The plot
shows the fraction of simulation snapshots found with the respective tiling
for each radius. In general, multiple tilings are found as solutions for a
single radius, where the results for ABB and ABC systems differ. The exact
data in text form in a table can be found in the ESI.†

‡ In general the presented analysis method using Voronoi diagrams works well
and is robust. In some rare cases, however, we find it to produce invalid results.
These cases are, when very short edges appear in the Voronoi diagram, which
means two vertices are very close together. In these cases the neighborhood
relations are not clear for the algorithm and small displacements of a single
particle can alter the resulting tiling. The other weak point is the cluster analysis.
Since all systems are run at finite temperature, there might be particles moving
outside their domain in the vicinity of another domains. The cluster algorithm
then can mistake both clusters as a single one. Most of these invalid frames can
be identified and then ignored by checking if w a 2. A neglectable number of
E1.5% frames were found to be invalid in the sense as discussed.
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and simulation volume geometry. The finite temperature of our
simulation then allows the system to jump into local minima
instead of the energetic ground state, which results in the
spectrum of tilings found here. For some systems though
(R = 4, ABB on R = 7, ABC on R = 8) the energy level of certain
configurations seems to be deep enough to prevent other
structures to assemble.

For all of the ABB system and ABC systems with R o 8 we
find that all tilings are of Thomson-type solutions, as seen in
Fig. 6. This means that the N A-type (and respectively B- and
C-type) patches will sit at the same positions as the electrons
would in a N-electron Thomson solution, which we checked by
visual observation. This is a remarkable result since although

the polymers only have short range interactions a structure of
long range order is formed. Such long range interactions in a
similar system of interacting micelles formed by diblock copolymers
has been predicted by ref. 71.

For ABC systems, with increasing radii beginning at R Z 8
an increasing number of configurations, up to E40%, are not
of the Thomson-type. These are shown in Fig. S2–S9 in the ESI.†
An analysis of the patch shapes in Thomson and non-Thomson
solutions did not show statistical significant differences.
Hence, a correlation between patch shape and being a Thomson
or non-Thomson solution could not be found. For more infor-
mation on the methodology and the data see Fig. S1 in the ESI.†
We rather argue that these systems are stuck in local minima.

Fig. 7 The three spherical tilings representing the structure of the A, B and C domains. The figure shows three single-colored tilings, generated by the
self-assembly of ABC star copolymers, in each of the colors on the same sphere. Left panel: Rendering of the simulation snapshot where the patches
creating the tiling are emphasized while showing the others simultaneously. Middle panel: The single-colored tiling derived from the emphasized patch
configuration on the left. Note that only patches of the emphasized colors are considered for the computation of the tiling, which allows for direct
comparison with single-colored tilings from ABB systems. The axis shows the orientation of the axis with the highest symmetry. Right panel: A 2D
projection of the tiling. The black axis in the middle column indicates the position of the red line in the projection plots. The label of the tiling is given on
the far right side.
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The Thomson problem in general is known for its high prob-
ability of being stuck in local minima.40 Already for N = 32
electrons the probability of finding the global minimum drops
significantly, which roughly coincides with the threshold where
our results show local minima. Using polymer melts instead of
point-like particles adds even more complexity to the energy
landscape. The fact that the ABB systems – somewhat simpler
than the ABC system, due to the missing color constraint for
example – do not show any non-Thomson solutions and that the
proportion of non-Thomson solutions increase with increasing
radius, and thus number of patches, supports this.

Based on the observation that the simulations only show
Thomson solutions up to systems with R = 7, all of those ABC
systems must consist of three different tilings, each of which
solves the Thomson problem on its own while coexisting with
two others on the same sphere. We will elaborate on this again
using an example system from the R = 8 runs using Fig. 7,
however, all systems of various sizes share the same behaviour.

Fig. 7 shows how three different Thomson solutions can
coexist on a single sphere. When only considering the blue
patches, while red and yellow act as a matrix, the resulting
tiling is of type [4.4.4]. Analogue type [4.4.5] and [4.4.4] tilings
are formed in the red and yellow patches respectively. The
tilings have a different orientation on the sphere as can be seen
on the orientation of the axis of highest symmetry.

In the case of the R = 8 tilings, the overwhelming number of
ABC systems were found to be a combination of three Thomson
solutions, where the most prominent combinations are (7/8/8)
with 19%, (7/7/8) with 15%, (7/7/7) with 15% and (6/7/7) with
14%. The number denotes the number of patches in the tiling,
the tiling label can be found using Table 1. Only a small
number of 1% of the systems contained tilings which are not
Thomson solutions. The same holds for systems with smaller
radius: since no tilings were found not to solve the Thomson
problem, all combinations there consist of Thomson solutions.
For larger systems the number of non-Thomson configuration
increases. Therefore, the amount of configurations containing
non-Thomson solutions increases as well, however, we cannot
say if that is caused by increasingly difficult equilibration or
due to other reasons, for example the color constraint preventing
some combinations to be assembled.

In the R = 8 case we found the (7/7/7) combination formed in
two different ways: once with only Thomson solutions, and
once with one Thomson solution and two non-Thomson tilings.
In this case we clearly see that it is possible to build this (7/7/7)
combination using only Thomson solutions, thus proving that
the color constraint does not prohibit the Thomson solutions
to form. This hints towards our guess that combinations with
non-Thomson solutions are not caused by the color constraint
but equilibration issues. Apart from this observation we could
not find any regularities in the frequencies of the different
combinations of the tilings for any radius.

It is important to note that although the simulation data of
ABB systems for R = 8 clearly shows the type [4.4.4] tiling as the
minimal energy configuration, we could only find one out of
300 combinations being a 3� [4.4.4] tiling on a single sphere in

the ABC systems of the same radius. This observation is found
as general behaviour across all runs: there are statistically
significant differences in the frequency with which single-
colored tilings occur in ABB and ABC systems. This circumstance
shows that while the general behavior – forming Thomson solu-
tions – seems untouched by the color constraint, it does affect the
self-assembly process: there are differences between ABB and ABC
systems that are manifested in the topology of the adopted struc-
tures, or at least in the statistical properties of the latter. This
observation enables us to answer the following question: if one is
only able to see one kind of color, for example by looking through
colored filters, is it possible to determine if the observed structure is
assembled by an ABB or an ABC system? The answer depends on
the circumstances: if only one configuration is available, the answer
is no, since each configuration found in this article is assembled by
both the ABB and the ABC systems. However, if multiple samples
are available, the answer is yes. The different statistics of frequencies
of the tilings in the different systems as shown in Fig. 7 enables us
to determine the type of systems of the given samples.

To understand why ABC systems behave differently we need
to look at the free energy functional determining the resulting
structures. When assuming that all equilibrium solutions are
Thomson solutions, the resulting tiling type is determined by
the number of patches assembled in the melt. As can be seen in the
data, this number is a function of the radius: with increasing sphere
size the number of patches increases. This follows from the energy
functional of polymer melts in the strong segregation limit:

F = Fconf + Fint

where Fconf is the entropic contribution determined by the domain
shape and Fint is the enthalpic contribution and measures the
interface area.71 The entropic contribution favours most spherical
patch shapes and penalises domains, where the polymer chains
have to be stretched. Consider an exemplary ABB system with two
A-type patches located at the north and south pole of the sphere.
The interfaces, on which the grafting points of the star copolymers
must sit, are then disk segments centred around the poles. From
there the B type arms stretch to cover the entire sphere. Since the
arm length is kept constant, the arms must stretch increasingly
with increasing sphere radius to cover the surface of the sphere.
This comes with an entropic penalty. At some point it becomes
energetically more favorable to change to a three patch configuration
which, despite the increasing interface energy, relaxes the polymer
arms and reduces the entropic energy contribution. This interplay
between minimising the interface area and entropic energy con-
tribution determines the number of domains and, thus, the
resulting structure in these systems.

The differences in the frequencies of tilings in ABB and ABC
systems are caused by a modification of the energy functional.
While in the ABB systems only A–B interfaces exist, the ABC
systems also develop A–C and B–C interfaces, thus, increasing
the enthalpic energy contribution. The entropic contribution
changes since the grafting points of the star copolymers are not
allowed to move freely along the A–B interface but are constrained
to ABC triple lines, resulting in more constrained polymer paths
leading, presumably, to an entropic penalty.
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Apart from the more subtle influences of the color constraint on
single-colored tilings in ABC systems, the effect of the color con-
straint can be directly seen when looking at the three-colored tilings
constructed from patches of all colors. In these tilings the vertices
and edges of the Voronoi cells coincide with the triple lines and
inter-domain interfaces of the polymer structure, see right panel in
Fig. 4 or Fig. 8. Note that unlike the single-colored tilings used so far,
each patch of any color corresponds to a Thomson particle at once.
Here the color constraint can be directly applied to these three-
colored tilings. As can be seen in the references in this article, all
Thomson solutions for N Z 12 contain tiles with an uneven number
of polygons, which means these solutions can not be formed by the
polymer melt due to the color constraint. This is backed by our data,
where we did not find any of the Thomson solutions for systems
with N Z 12, where N = NA + NB + NC is the total number of patches
in all colors respectively Thomson particles. For systems with R r 7
tilings consisting of 6 squares plus N � 6 hexagons are found, for
system sizes with R Z 8 also octagons occur in tilings with N Z 25.
For each octagon an additional square must be introduced to fulfil
Eulers equation with w = 2.

As can be seen in Table 1, the only Thomson solutions for N o 12
which only contain polygons with an even number of edges are N = 3
and N = 6. While the N = 3 case proved difficult to equilibrate to a
cylindrical phase due to very small system sizes and does not allow
for any conclusions, the N = 6 case is equivalent to a cube with
alternating colored faces and is found for R = 4 in ABC systems (see
Fig. 8). While each color solves the Thomson problem on its own as
single-colored N = 2 tilings, the combination of all three colors also
forms a three-colored Thomson solution unlike any other configu-
ration in our data. This observation gives rise to the assumption that
also for the three-colored tilings the Thomson solutions would be
the optimal state, however, the frustration imposed by the color
constraint keeps the system in a metastable state.

4 Conclusion and outlook

In this article the self-assembly of ABC and ABB star copolymers
confined to a spherical shell was simulated using DPD molecular

dynamics simulations in order to investigate the combined
influence of geometric frustration and the color constraint
inherent in the ABC system. In bulk simulations, these polymers
form columnar phases whose cross sections are 3-colored,
planar, hexagonal tiling patterns. The architecture of ABC stars
imposes the color constraint onto the resulting structures: only
tiles with an even number of edges are allowed where the color
of all adjacent tiles must alternate. To differentiate between the
influence of the color constraint and the curvature ABB systems were
simulated as reference, where the color constraint does not apply.

We can summarise our findings into four core results:
(1) apart from kinetically stuck configurations in large ABC
systems (R Z 8), we find all single-colored tilings in both ABB
and ABC systems to be Thomson solutions. (2) In ABC systems
we find three possibly different tilings on each sphere, one in
each color while neglecting the other two, all of which solve the
Thomson problem for small radii individually. We find some
non-Thomson solutions for larger radii (R Z 8) but believe this
is due to equilibration issues as discussed above.

(3) A spectrum of configurations dominates the ensemble,
rather than a single structure. This leads to the occurrence of a
small number of different tilings in both ABB and ABC systems,
with varying probability. (4) The latter can be tuned by varying
the sphere radius, which means we can switch between Thomson
solutions of different numbers of particles. While we could not
find any combination of three tilings on the same sphere which
the color constraint does not allow, the frequencies of the tilings in
the ABC compared to the ABB system show statistically significant
differences. This provides the possibility to differentiate between
the two systems: statistically speaking we can determine if a tiling
was formed by an ABB or and ABC system by only being able to see
a single color.

A direct comparison of our work to the presented results of
frozen particles on a sphere35 or the diblock copolymers on a
spherical substrate30 is somewhat difficult: while in these
systems the number of particles is in the order of 100 (which
is equivalent to one patch in our systems), our largest system
consists of a maximum of 12 domains in a single tiling. At these
system sizes the tilings are missing the regularity to define
‘‘defects’’ in their structure. Taking the entire ABC system with
all of its colors into account, however, we have a system
consisting of up to 37 patches. Here we can see the influence
of the color constraint: instead of finding isolated pentagonal
defects or scars of pentagons and heptagons, we find either six
squares or a combination of squares and octagons to cope with
the geometrical constraint.

A promising and interesting application of this work can be
found in the field of patchy particles: discrete particles with
patches on their surface which can couple and form bonds to
other patches, e.g. Janus-particles.72,73 A mechanism to assemble
such particles and tune their coordination number include self-
assembly of monolayers of surfactants on spherical substrates.74,75

Our work presents an example how such a self-assembly could be
realised. Instead of using two repulsive walls to model a spherical
substrate, the architecture and composition of the polymer can be
modified, so that spherical droplets will form in solution, as seen

Fig. 8 Rendering and three-colored tiling of a three-colored Thomson
solution. The figure shows a three-colored tiling, where each patch of any
color corresponds to a Thomson particle. Each color on its own in terms as
described above solves the Thomson problem, but also the three-colored
tiling solves the Thomson problem. This configuration with N = 6 is one of
only two where this is possible since the tiling in this case only consists of
squares which are allowed with the color constraint.
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in previous work.76–79 Preliminary simulations showed that adding
a fourth arm, immiscible with the already existing arms, would
form the core of such a droplet, on which surface the ABC arms
assemble as presented in this work. By tuning the length of this
fourth arm, the radius of the droplets can be changed. As shown in
this article, the number of patches would change and therefore the
coordination number of the droplet as a patchy particle.
Further, instead of using symmetric star copolymers, the length
of one arm can be varied to generate different, ‘asymmetric’
tilings, analogue to.10,12
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