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om ABC star molecules: 3-colored
foams?†

Jacob J. K. Kirkensgaard,*a Martin C. Pedersena and Stephen T. Hydeab

We present coarse-grained simulations of the self-assembly of 3-armed ABC star polyphiles. In systems of

star polyphiles with two arms of equal length the simulations corroborate and expand previous findings

from related miktoarm star terpolymer systems on the formation of patterns containing columnar

domains whose sections are 2D planar tilings. However, the systematic variation of face topologies as

the length of the third (unequal) arm is varied differs from earlier findings regarding the compositional

dependence. We explore 2D 3-colored foams to establish the optimal patterns based on interfacial

energy alone. A generic construction algorithm is described that accounts for all observed 2D tiling

patterns and suggests other patterns likely to be found beyond the range of the simulations reported

here. Patterns resulting from this algorithm are relaxed using Surface Evolver calculations to form 2D

foams with minimal interfacial length as a function of composition. This allows us to estimate the

interfacial enthalpic contributions to the free energy of related star molecular assemblies assuming

strong segregation. We compare the resulting phase sequence with a number of theoretical results from

particle-based simulations and field theory, allowing us to tease out relative enthalpic and entropic

contributions as a function of the chain lengths making up the star molecules. Our results indicate that a

richer polymorphism is to be expected in systems not dominated by chain entropy. Further, analysis of

corresponding planar tiling patterns suggests that related two-periodic columnar structures are unlikely

hypothetical phases in 4-arm star polyphile melts in the absence of sufficient arm configurational

freedom for minor domains to form lens-shaped di-gons, which require higher molecular weight

polymeric arms. Finally, we discuss the possibility of forming a complex tiling pattern that is a quasi-

crystalline approximant for 3-arm star polyphiles with unequal arm lengths.
1 Introduction

Considerable attention has recently been devoted to the explo-
ration of micro-phase separated structures in melts of star-
shaped ABC miktoarm copolymers with a number of reports of
synthesis, experiments and theory.1–24 So far focus has been
principally directed towards segregated cylindrical mesostruc-
tural self-assemblies, whose orthogonal sections are two-
dimensional (2D) 3-colored tiling patterns of the plane. More
recently an exploration of the self-assembly of lower molecular
weight analogues of ABC miktoarm copolymers, termed ‘star
polyphiles’, has been initiated.25–28 Star polyphiles are oligomers
rather than polymers, current examples contain hydrophilic,
oleophilic and uorophilic oligomeric chains attached to a
common central junction. These molecules resemble amphi-
philes, in that they can self-assemble in solution, with an
gen, Denmark. E-mail: jjkk@nbi.dk
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(ESI) available: Additional simulation
ript, barycentric embeddings of tiling
additional uorocarbon moiety that is designed to be immis-
cible with the other two moieties. As with miktoarm star
terpolymers, this extra arm induces novel topological
constraints on the hydrophilic, oleophilic and uorophilic
micro-domains. Scattering experiments and polarised optical
microscopy conrm the possibility of self-assembly of three-
arm star polyphiles into a number of distinct liquid crystalline
mesophases. A relevant example in this context is the formation
of a [12.6.4] tiling pattern,27 so far the only experimental report
on liquid crystalline structure formation in these novel molec-
ular systems. However, star polyphiles could very likely mimic
the behavior of miktoarm copolymers in the same way that
amphiphiles and diblock copolymers display a number of
commonmesophases despite differences in size and underlying
segregation mechanisms. The simulations presented below
indicates that this is indeed the case.

Previous simulations by Dotera and colleagues have estab-
lished the possibility of a number of mesostructures whose
cross-sections are various planar tilings, including several
patterns already observed in actual miktoarm copolymer
systems. These include most Archimedean tilings13,14,29 as well
as quasi-crystalline patterns.30 Their investigations used a
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Rendering of themodel star molecule. A neutral center junction
connects 3 mutually immiscible arms, indicated by different colors: A
(red), B (blue) and C (green). Here x ¼ 1, the ratio of C to A length.
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lattice Monte Carlo (MC) approach. Huang et al. and Kirkens-
gaard have implemented dissipative particle dynamics (DPD)
simulations to explore miktoarm copolymer self-assembly as a
function of the interactions between the molecular species, the
molecular architecture and from blending different block
copolymers.15,21–24,31 The DPD simulations are generally consis-
tent with the Monte Carlo simulations of Dotera et al. The self-
assembly of ABC miktoarm star terpolymers has also been
addressed using self-consistent eld theory (SCFT) in various
implementations (real vs. reciprocal space and 2D vs. 3D
based).17–20 The SCFT predictions are qualitatively in line with
the simulations mentioned above although slight variations in
the compositional dependence are found, also between the
different SCFT studies. In this paper we compare and contrast
simulations of self-assembly of star polyphiles with the simu-
lation and eld theory calculations of miktoarm copolymers.

Our simulations described below employ harder Lennard-
Jones based interaction potentials compared to the DPD, MC
and SCFT work described above. This is to mimic the short
chain nature of the polyphile molecules compared to for
example the DPDmethod where very so potentials are typically
used to describe polymers. Our simulations are a kin to recent
work on bola-amphiphiles which also show related supramo-
lecular structure formation.32,33 As described below the differ-
ences in the theoretical methods lead to differences in the
progression of tilings patterns as a function of composition.
This leads us to the question of whether the formation of these
structures are primarily a result of interfacial energy minimi-
zation, i.e. whether the tilings can be described as 3-colored
foams, or to what extent the chain nature of the molecules
determine the resulting assemblies. As is well known from both
amphiphilic and block copolymer self-assembly, the formation
of complex morphologies is a result of a delicate free energy
balance between enthalpic and entropic (packing related)
contributions. To test this hypothesis we propose a generic
algorithm to generate relevant tiling patterns which we use as
input for Surface Evolver calculations. The Surface Evolver
employ an area-minimizing algorithm to determine the optimal
pattern as a function of composition based on interfacial energy
alone, i.e. treating the structures as 3-colored foams. This allows
us to completely separate out the interfacial enthalpic contri-
bution and we compare and discuss the results in light of the
simulations and the above mentioned results from the
literature.

2 Simulation details

We employ a simple coarse-grained approach to simulate self-
assembly of star polyphiles into mesoscale structures.25 The
simulation technique is an extension of a setup originally
developed specically to model assembly of lipid bilayers.34–36

The original model reduced lipid molecules to linked beads of
two ‘colors’ representing hydrophobic and hydrophilic moieties
respectively. In our modied model, shown in Fig. 1, each
molecule consists of a neutral junction bead and an (in prin-
ciple) arbitrary number of arms attached, in this case three.
Each (A, B and C) arm has a single color (red, blue and green
This journal is © The Royal Society of Chemistry 2014
respectively), distinct from those of the other arms. Self-
assembly is driven by effective attractions between like arms of
different molecules as described below.

Molecular dynamics (MD) simulations are performed using a
modied version of the mbtools extension to the Espresso
package.37 The simulations presented employ the following
interactions: all bead sizes are controlled via a repulsive trun-
cated and shied Lennard-Jones potential

Vrepðr; bÞ ¼
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where 3 and s denote our units of energy and length respec-
tively. The cut-off distance, rc ¼ 21/6b where b is the bead
diameter. Connected beads along each arm are linked by a
Finite Extensible Nonlinear Elastic (FENE) bond

Vbond ¼ � 1

2
kbondrN

2 log
h
1� ðr=rNÞ2

i
(2)

with stiffness kbond ¼ 303/s2 and divergence length rN ¼ 1.5s.
We impose a harmonic spring potential between the central
junction bead and the terminal bead of each arm, tending to
straighten the arms.

Vbend ¼ 1

2
kbendðr� lcsÞ2: (3)

where the bending stiffness kbend ¼ 0.53/s2 and lc ¼ nb + 2, nb
being the number of beads of the arm in question. Lastly, an
attractive potential acts between all beads of same color (i.e.
between like arms) according to the function:

Vattrðr; bÞ ¼
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This potential has attractive depth 3 and an interaction range
set by the distance scale parameter wc. As described previously
values of wc around 1.2–1.6s is found to be optimal for these
simulations.25 All simulations presented were run with equiva-
lent attractive interactions between all like beads and s ¼ 1, 3 ¼
1. They were performed as constant volume (NVT ensemble)
simulations using a Langevin thermostat at temperature kBT ¼
1.53 and with time steps dt ¼ 0.01s and a friction constant G ¼
s�1 (in units of Lennard-Jones time s). A cubic box of side length
Soft Matter, 2014, 10, 7182–7194 | 7183
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L with period boundary conditions constrained the ensemble.
All simulations were started from a random gas conguration
and run until an equilibrium state was reached, which is usually
easily determined visually. Additional details of the different
simulations are given in the ESI.† Simulation snapsnots were all
made with the VMD package.38
3 Self-assembly of 1 : 1 : x polyphiles

We analyzed rst the effect of varying the length of one (green)
arm while xing the other (red and blue) arm lengths to be
equal. We quantify the composition by the parameter x dened
as the ratio of C to A beads, e.g. x ¼ 2 means that the green C
arm is twice as long as the red A and blue B arms. Various bead
numbers were used in the coarse-graining, to allow variation of
the relative lengths. A number of distinct mesophases were
detected, depending on x. These are summarized visually in
Fig. 2.
Lamellar phase

When one of the arms is signicantly shorter than the other two
(i.e. x is small) the system self-assembles to a lamellar phase.
This is not surprising, since in the limit of vanishing x, the star
polyphile reverts to a conventional amphiphile, with equivalent
hydrophobic and hydrophilic domain volumes. We nd that the
minority component is distributed uniformly over the whole
interface, consistent with the copolymer simulations;15 however
we do not nd spherical domains, as reported elsewhere.13 This
polyphile mesostructure is that expected from self-consistent
eld theory (SCFT)17 as also remarked by others.15 However,
while this result is attributed to the segregation level (strong vs.
Fig. 2 Phase diagram of model star polyphiles when varying the length
parameter x is the fractional length of the green domain in all snapshots
assigns a polygonal tiling pattern a set of numbers [k1.k2.kl] indicating th
order. Tilings with more than one topologically distinct vertex are denoted
location of the discrete bead number variation. See Table S1† for details
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weak) in the case of copolymeric molecules, our smaller mole-
cules aggregate to give a uniform distribution of the extremely
short green chains for entropic reasons alone.
Bicontinuous double diamond phase

For slightly longer green chains, the system adopts a novel
multicontinuous morphology, previously unreported. The two
larger red and blue components form a pair of equivalent
interwoven labyrinths whose channels lie on diamond
networks. The minority component and junction region form a
sponge-like pattern closely resembling the triply-periodic D
minimal surface, separating the two labyrinths. The resulting
pattern is a cubic mesophase with space group symmetry Fd�3m.

For still larger green arms, a variety of columnar phases
result, discussed below. The star polyphiles thus effect a tran-
sition from a lamellar phase to columnar phases via a bicon-
tinuous phase, as expected from geometric considerations of
amphiphilic systems if the amphiphile has an effective taper in
cross-sectional area from the hydrophobic–hydrophilic inter-
face to the free hydrophobic chain ends.39 For our 3-arm star
polyphiles, the reasonably small green arms (x� 0.2), effectively
mix with both the red and blue domains, forming swollen
regions between the red and blue domains, thereby mimicking
the molecular shape of a tapered amphiphilic bilayer (with red
and blue monolayers, glued by the green intermediate domain).
Harlequin pattern

Still further green arm growth leads to a novel intermediate
mesophase, where the green minority component uniformly
lines the red-blue interfaces forming at walls, as well as
forming small cylindrical domains. The intermediate
of one arm while keeping the others fixed at equal (unit) length. The
. The different tiling patterns are named by their Schläfli symbol13 that
at a vertex in the tiling is surrounded by a k1-gon, a k2-gon,. in cyclic
[k1.k2.k3; k4.k5.k6]. The black dots along the x-axis indicates the precise

.

This journal is © The Royal Society of Chemistry 2014



Fig. 3 Wheel construction (bold black lines and coloured vertices) of
dual graph to 3-coloured tiling (faint coloured tiling in background). All
the vertices of the dual graph linked to a common central (green) hub
vertex must alternate between red and blue, hence the number of
spokes radiating from the hub must be even.
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cylindrical phase resembles a ‘harlequin’ pattern, of alternating
blue and red columns whose sections are distorted octagons.
Adjacent like-coloured red and blue domains are separated by
quadrilateral prismatic green domains, adjacent domains of
distinct colours by green walls. This harlequin phase is only
found for x ¼ 0.25 but is stable over long simulation times. It
has not been reported previously.

Tiling patterns

For x > 0.33 the smaller green component forms distinct pris-
matic domains, rather than walls between the two bulkier red
and blue domains detected at lower x. Assemblies of the 3-arm
star polyphiles thus segregate into 3 distinct phases, that meet
along three-phase ”triple-lines”. For still larger green arms, a
suite of columnar mesophases are formed, whose 2D sections
are planar tiling patterns. We describe these patterns by a 2D
Schläi symbol [k1.k2.k3], describing the polygons (of size k1, k2
and k3) common to each vertex (see caption to Fig. 2).

When the relative volume fraction of the green arms, x �
0.33–0.5, a rectangular [8.8.4] pattern is formed. The balanced
case, for which all three arms are roughly equal in size, (x � 1)
gives the Platonic hexagonal honeycomb, whose section is the
[6.6.6] tiling, resulting in a hexagonal columnar mesophase. If
the green arms occupies slightly more volume than the equal
red and blue arms, i.e. x � 1.75 a columnar phase with square,
hexagonal and octagonal columns was found. The associated
2D tiling has topology [8.6.4; 8.6.6], with two topologically
distinct vertices. For x� 2–3, the simulations are generally more
difficult to equilibrate, in agreement with Dotera et al.However,
a columnar phase whose 2D section is the [8.6.4; 10.6.4] tiling
has been observed. As the relative volume of the green arm
grows larger still, four further columnar phases are found. We
describe these patterns by their 2D sections: the [10.6.4; 10.6.6]
tiling, the [12.6.4] Archimedean tiling, the [14.6.4; 14.4.4] tiling
and a cylindrical phase denoted [CYL]. There are elements of 16-
and 18-gons in the three [CYL] patterns but no conclusive
results have been produced, partly because the equilibration of
these rather large molecules is computationally very demanding
in the present setup. However, as discussed below we have good
reason to believe that [16.6.4; 16.4.4] and/or [18.6.4; 18.4.4]
tilings could be found in these systems. Among the observed
tiling patterns, those containing [8.6.4; 10.6.4] and [14.6.4;
14.4.4] planar sections are novel compared to the polymer
simulations mentioned above.13,15,21

Hierarchical lamellae

Lastly, at x¼ 6 a hierarchical lamellar phase forms in preference
to a columnar topology. Here the green majority component
forms a lamellar phase, separated by red and blue domains
which themselves build distinct lamellar phases, orthogonal to
the green lamellae. (In our simulation the neighboring red-blue
domains on either side of the green domain is rotated 45
degrees relative to each other which is why the central red-blue
region looks disordered in the gure.) A similar structure was
found previously,13 both with and without relative rotations of
the minority domains.
This journal is © The Royal Society of Chemistry 2014
4 Generation of potential patterns
consistent with the 3-arm star
molecular architecture

The formation of prismatic patterns based on a limited subset
of possible two-dimensional tilings of the plane in 1 : 1 : x: ABC
star systems can be understood by taking note of the following
requirements imposed by these star molecules. First, all tilings
must contain only vertices of degree-three, consistent with the
molecules' three-arm topology. Second, in order to allow a
3-coloured pattern, all tiles must be bounded by polygons with
an even number of sides.13 To see why, consider the dual 2D
graph, whose vertices, edges and faces are formed by the faces,
edges and vertices respectively of the original 2D tiling. We
require each vertex to be coloured red, green or blue, and all
vertices sharing an edge to be coloured differently. Consider the
wheel of vertices, all connected to a central (green, say) vertex by
spoke-like edges (Fig. 3); evidently, these wheel vertices must be
alternately coloured red and blue. To avoid like-coloured adja-
cent vertices, the wheel must contain an even number of
vertices, so the number of spokes radiating from the (arbitrary)
vertex (equal to the degree of the vertex) must be even. Since the
vertex degree of the dual is equal to the polygonal size of the
original graph, all relevant 2D tilings must contain even-sided
polygons only. Third, since the molecules have composition
red : blue : green ¼ 1 : 1 : x, the areas of two of the three poly-
gons (gauged by their in-circle or out-circle radii) around each
vertex should be roughly equal.

For simplicity, assume for now that all vertices are topolog-
ically equivalent, so the tiling has Schläi symbol [nR.nG.nB].
Euler's relation for degree-3 tilings constrains the polygons nR,
nG and nB about each vertex as follows:

V � E + F ¼ 2 (5)

For each vertex then, the tiling contains
3
2
edges (since it is of

degree-three), and
1
ni

faces for each of the three (ni-sided) poly-

gons incident to that vertex. i.e.:

1� E

V
þ F

V
¼ 1� 3

2
þ 1

nR
þ 1

nG
þ 1

nB
¼ 2

V
¼ 0; (6)

since the number of vertices is unbounded (V ¼ N). Therefore,
Soft Matter, 2014, 10, 7182–7194 | 7185
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nRnGnB ¼ 2(nGnB + nRnB + nGnR) (7)

Suppose rst that the smallest (e.g. green) polygons are di-
gons – lenses. In that case, no planar tessellations are possible
under the constraint of eqn (7) since it has no pair of positive
integer solutions for nR and nB when nG ¼ 2. However, we can
form an innite variety of topologically admissible patterns
containing green digons, red polygons of arbitrary size and
multiply-connected blue domains as follows. First, form
‘necklaces’ of di-gons, then scatter these in the plane so that
they do not intersect, e.g. Fig. 4. The resulting 3D patterns are
disordered arrays of red cylinders, decorated by smaller green
cylinders, embedded in a continuum of blue.

While topologically acceptable, these disordered patterns are
unlikely to be found in ABC star systems containing mono-
disperse molecules, since the latter prefer roughly equivalent
domains for each arm in all molecules. Further, these patterns
have very different red and blue domains; a situation that is
inconsistent with the equal red and blue arms. However, both
domains can be made equivalent if the necklaces are opened to
form innite strings, giving 3D patterns of red and blue
lamellae, decorated by green cylinders. Further, ordered place-
ment of the green digons leads to equivalent red and blue
domain shapes (Fig. 6(a)). Since the green domains are very
different to the red and blue, these patterns would be expected
to form only for small x values in a 1 : 1 : x star molecule. Our
MD simulations have produced ‘smeared’ lamellar patterns,
with the green domains mixed uniformly with the red and blue
domains, rather than these demixed patterns. That result is
likely to depend only on the relative strength of attractive
interactions within the green beads, compared with repulsive
interactions between green and other bead colours. Further, our
coarse-grained simulations assign only one or two beads to the
green arms, so arm folding to allow di-gon formation is
unlikely. Indeed, this ‘decorated lamellar’ pattern has been
reported in miktoarm copolymer Monte Carlo simulations.13

Consider next the possibility of 4-sided green domains. A
number of planar tessellations are possible, corresponding to
positive (and even) integer solutions to eqn (7). If we demand
that nR ¼ nB, the [8.8.4] tiling results, observed in our simula-

tions for x ¼ 1
2
. If the green domains are hexagons, both red and

blue domains are also hexagonal (the [6.6.6] tiling), also
observed for x ¼ 1. If the green domains are polygons whose
order exceeds 6, corresponding to x $ 1, eqn (7) demands that
the blue and red domains can only be combinations of 2-, 4- and
6-gons, since the average polygonal size must be 6. In contrast
Fig. 4 Hypothetical pattern for 3-arm star molecule assemblies
containing green di-gonal ‘lenses’.
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to larger miktoarm copolymers (discussed above), 2-gons are
less likely to form in polyphiles than larger polygons. We
therefore consider mixtures of 4- and 6-gons only. A large
number of tilings are possible, which we construct with a
generic algorithm, that yields – among others – all of the rele-
vant tilings found in the simulations.
5 Spoke algorithm

To generate suitable tiling topologies, we decorate 2D hexag-
onal arrays of discs with spokes along the three equivalent
directions between closest neighbors. The simplest patterns
have equivalent decorations, denoted [s1, s2, s3], for example the
[1, 1, 1] case gives the [6.6.6] tiling, shown in Fig. 5 along with
two other examples. Also, in Fig. 6 two lamellar patterns are
shown corresponding to the [1,0,0] and [2,0,0] decorations. We
use this spoke algorithm to generate tiling topologies that obey
the constraints for possible tilings of three-arm star assemblies
deduced above.

An additional suite of topologically inhomogeneous patterns
are generated if we relax the requirement that all discs be
equally decorated by spokes. Thus, for example, two distinct
spoke decorations in alternating columns of discs – that we
denote by the symbol [2, 2, 1; 2, 1, 1] – results in the [8.6.4;
10.6.4] tiling, observed in one simulation and illustrated in
Fig. 8(n).
6 Relative energies of various
patterns

The spoke algorithm can be used to generate an unlimited
number of tilings. In order to decide the patterns likely to
Fig. 5 A hexagonal array of discs, with nearest neighbours along three
distinct axes (dashed lines). Generic 2D patterns are formed by linking
discs along these three axes with single-, double-,. spokes (top row),
leading to different three-colored tilings (bottom row). Full list of
patterns generated are shown in Table 1.

This journal is © The Royal Society of Chemistry 2014



Fig. 6 Lamellar patterns formed by decorating the discs of Fig. 5 with
spoke arrangements, cf. Table 1. The patterns correspond to (left)
decorated lamellae ([1, 0, 0]), (right) alternating lamellae pattern ([2, 0, 0]).

Fig. 8 Examples of relaxed patterns derived using Surface Evolver for
selected values of c, q and x. The shown patch of the pattern corre-
sponds to the region investigated by Surface Evolver, which is exactly
the unit cell.

Fig. 7 Relaxation of the [8.8.4] tiling pattern using Surface Evolver.
From an arbitrary initial configuration of vertices within the unit cell, (a),
the pattern is subjected to a number of optimization steps and
refinement routines, resulting in patterns such as (b) and (c), until an
estimate of the relaxed pattern is obtained, (d). In this case, the pattern
corresponds to the setting x ¼ 0.8, c ¼ 1, and q ¼ p/2. The script
responsible for the generation of this pattern is available in the ESI.†
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appear in condensed materials made up of star molecules,
some ranking of the relative energies of various patterns is
therefore needed. A simple working hypothesis that we test here
is that the 2D tiling patterns found in simulations are those
with smaller interfacial (suitably normalised) lengths between
distinct polygonal domains. That length is proportional to the
surface tension acting to miminise the area of domain walls in
the columnar domains formed by extruding the tilings along a
third perpendicular axis.26

We therefore compare the relative stability of distinct
topologies patterns subject only to an interfacial energy

contribution for each pattern, that scales with
luc

Auc
, where luc is

the total length of the edges in a given pattern per unit cell and
Auc is the unit cell area. We can reduce the interfacial energy
This journal is © The Royal Society of Chemistry 2014
(dependent on the area of the domain walls) to an energy per
length of the 2D cross-section of the prismatic patterns by
noting that the area scales as lb, where b is the thickness of a
slice of the pattern, equal to the molecule centre-to-centre
spacing between adjacent molecules lining the three-fold
branch lines (normal to the 2D tiling patterns, located at the
vertices of the tilings). Each star-polyphile molecule of compo-
sition 1 : 1 : x occupies a volume (2 + x)b and there are N
Soft Matter, 2014, 10, 7182–7194 | 7187
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molecules per unit cell, where N denotes the number of vertices
of the tiling within a unit cell. The energy per molecule is then

Emol � lucb

N

and luc is the total edge-length of the tiling within a unit cell, scaled
to contain red and blue domains of unit volume. The volume of the
unit cell is (2 + x)Nb, giving a 2D cross-sectional area of

Auc ¼ N(2 + x),

equal to the area of the unit cell of the 2D tiling pattern. The
tiling edge length depends on the unit cell area Auc, and varies
as

luc ¼ l0

�
Auc

A0

�1=2

where l0 and A0 are units of length and area respectively.
Therefore

luc � l0
ðNð2þ xÞÞ1=2

A0
1=2

giving

Emol � l0ð2þ xÞ1=2b
ðNA0Þ1=2

; (8)

or, per unit volume,

Ev � l0

ðNA0ð2þ xÞÞ1=2
; (9)

We have argued in a related analysis26 that the relative
interfacial energies of tricontinuous patterns for ‘balanced’
3-arm star polyphiles (with composition 1 : 1 : 1) scale as:
Table 1 List of planar patterns formed by decorating the hexagonal ar
directions linking nearest discs. Patterns formed with s1, s2 and s3 paralle
Increasing x results in patterns with higher spoke numbers (si). The tabu
(contained within the shaded asymmetric domain) refer to the symmetr

Pattern [s1, s2, s3] Figure

[N, N.2] [1, 0, 0] 6(a)
[8.8.4] [1, 1, 0] 8(b)
[6.6.6] [1, 1, 1] 8(c)
[8.6.4; 8.8.6] [2, 1, 0] 8(k)
[8.4.4; 8.8.8] [3, 1, 0] 8(l)
[8.6.4; 8.6.6] [2, 1, 1] 8(d)
[8.6.4; 10.6.4] [2, 2, 1; 2, 1, 1] 8(n)
[10.4.4; 10.6.4; 10.6.6] [3, 1, 1] 8(m)
[10.6.4; 10.6.6] [2, 2, 1] 8(e)
[12.6.6; 12.6.4; 12.4.4] [3, 2, 1] 8(f)
[12.6.4] [2, 2, 2] 8(g)
[14.6.4; 14.4.4] [3, 2, 2] 8(h)
[16.6.4; 16.4.4] [3, 3, 2] 8(i)
[18.6.4; 18.4.4] [3, 3, 3] 8(j)
[12z.6.4; 12z.4.4] [2z, 2z, 2z]
[(12z + 6).6.4; . (12z + 6).4.4] [2z + 1, 2z + 1, . 2z + 1]
[4.4.N] [2, 0, 0] 6(b)
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Es � 3�1/2 (10)

where the parameter 3 :¼ VL
S2 is a dimensionless measure of the

interfacial geometry and V, L and S denote the volume, triple-
line length and interfacial area per unit cell. That scaling can be
expressed in terms of the structural parameters for the pris-
matic patterns that result from 2D tilings considered here as
follows. The triple-line length, L ¼ Nb, the cell volume V ¼ Ab
and the area S ¼ lb, so that

3 ¼ AN

l2
(11)

and eqn (9) can be rewritten:

Ev � ((2 + x)3)�1/2 (12)

reconciling eqn (9) and (10).
Eqn (12) can be used to estimate the relative interfacial

energies per molecule for the suite of 2D tilings listed in Table 1,
via the geometric parameters 3 and x. If we assume that the free
energy of these star molecular assemblies depends only on the
surface tension, we can deduce optimal geometries for each
tiling pattern as a function of x by relaxing the various pattern
topologies to minimize the value of l. It is well known – though
only recently proven40 – that the relaxed geometry for the [6.6.6]
pattern and x ¼ 1 is the hexagonal honeycomb, the stable
conguration of a two-dimensional froth with equal bubbles.
This pattern is identical to the barycentric embedding of [6.6.6]
(drawn in Fig. S2†). This “balanced” case (x¼ 1) is, to the best of
our knowledge, the only one for which the optimal pattern, with
minimal scaled edge length separating bubbles (our 3) is
known. Extensions of that to three-coloured patterns with
composition 1 : 1 : x is a simple generalization of the problem
ray of discs of Fig. 5 with various spoke multiplicities along the three
l spokes along the three directions are denoted in the Table [s1, s2, s3].
lated space groups and number of symmetrically distinct vertices Nv

ies of 3-coloured tilings

2D symmetry
– uncolored

2D symmetry
– colored

3D symmetry
– colored Nv

2222 � cm 1
244 244 p4mm 1
236 333 p3ml 1
2222 2222 p2mm 3
2222 2 22 c2mm 4
2222 2222 p2mm 4
2222 2222 p2 18
2222 � cm 5
2 22 22 p2mg 5
2222 2222 p2 10
236 236 p6mm 1
2 22 22 p2mg 7
2222 2222 p2mm 8
236 333 p3m1 3
236 236 p6mm z
236 333 p3m1 2z + 1
2222 2222 p2mm 1

This journal is © The Royal Society of Chemistry 2014
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to unequal cells. As famously recognized by Lord Kelvin, when
exploring the three-dimensional analogue of our x¼ 1 problem,
“the problem is solved in foam”,41 due to the surface tension of
soap lms. Our simpler problem, whose solutions are prisms,
are solved in dry two-dimensional bubble ras, where the
bubble areas are tuned to 1 : 1 : x fractions about each vertex.

A convenient realization of various topologies realized by the
spoke algorithm are the barycentric embeddings, (where each
vertex lies at the barycenter of its neighbouring vertices, see
Fig. S2†). We can build those embeddings using the Systre
soware of Delgado Friedrichs.42,43 These embeddings realize
without exception the most symmetric possible geometry for a
given topology,43 whose symmetry is characterised by the 2D
orbifold, notated using Conway's notation.44 Force balance
between edges of 2D dry foams demands that edges coincident

to a vertex invariably subtend angles of
2p
3

with each other at

equilibrium. Among the patterns generated by our spoke algo-
rithm, only the [6.6.6] case fulls this condition without some
geometric distortion of the straight-edge barycentric embed-
dings. Generic patterns adopt this optimal geometry by curving
edges to achieve the required angles.
Fig. 9 The energy per vertex in the relaxed patterns as a function of x.
The solid lines represents patterns that are realised in the phase
diagram, whereas the dashed lines are topologies unable to compete
energy-wise.
7 Surface Evolver calculations

Given the complexity of Hales' proof of the honeycomb
conjecture, we have resorted to numerical soware to determine
relaxed geometries with minimal edge lengths for the spoke
patterns as a function of the composition x. We use the freely
available Surface Evolver soware,45 which is ideally suited to
estimate optimal, relaxed geometries for lms (and in our case
one-dimensional “threads”) under surface tension.

First, we build tiling patterns whose topologies are those
formed by our spoke algorithm. As shown in Fig. 7 each pattern is
optimized starting from an arbitrary initial state fullling the
relevant topological requirement, given by the complement of
vertices and edges per translational unit cell in their barycentric
counterparts. This allows us to relax the patterns using the string-
model implemented in Surface Evolver (version 2.70a). In partic-
ular, all patterns are relaxed on a (at) torus, enforcing trans-
lational symmetry via periodic boundary conditions. The
dimensions of the torus, and the related 2D unit cell are varied to
determine the global minima of edge lengths for a given tiling
pattern and x. Two parameters determine those dimensions: the
ratio between the two lattice vectors of the unit cell, c, and the
angle between those vectors, q. By thoroughly sweeping ranges of
q and c values and minimizing the emerging patterns, we can
estimate the optimal unit cell for a given x as well as the asso-
ciated interfacial energy. For more details, see the ESI† where an
example of the resulting energy landscape can be found.

We have used batch scripts in Surface Evolver to estimate the
relaxed congurations of vertices and unit cell parameters for
the suite of tiling patterns in Table 1 resulting from the spoke
algorithm. All relaxed embeddings found by Surface Evolver
were found to exhibit the same “maximal” symmetry realised by
the unrelaxed barycentric embeddings. In general however –

excepting the [6.6.6] case – the edges curve to minimise their
This journal is © The Royal Society of Chemistry 2014
edge length, as discussed above. Those relaxed patterns allow us
to estimate the energies per unit volume for all tilings, using
eqn (12). The results are shown in Fig. 9.

The Surface Evolver results suggest a rich sequence of
optimal 3-colored foam-like tilings from the suite generated by
the spoke algorithm and listed in Table 1 – with minimal edge
length – and 2D bubble area fractions (or prism volume frac-
tions) 1 : 1 : x. The normalised interfacial energies per volume
(eqn (12)) are plotted for the various tilings in Fig. 9. In order of
Soft Matter, 2014, 10, 7182–7194 | 7189
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increasing x we nd the following 2D tilings to be optimal for x
< 3: [8.8.4]$[6.6.6]$[10.6.4; 10.6.6]$[12.6.4]$[14.6.4; 14.4.4]$
[16.6.4; 16.4.4]$[18.6.4; 18.4.4].

We estimate an upper bound for the energies of tiling
patterns for larger x values as follows. Two innite sequences of
tilings are possible, with topologies [12z.6.4; 12z.4.4] and [(12z +
6).6.4; (12z + 6).4.4] where z is an integer and 2D symmetries
corresponding to the orbifolds 236 and 333 respectively. We
will restrict our analysis to the latter case, but similar arguments
apply to both series of patterns. The number of vertices within
the orbifold, N, depends on z, via the equation N ¼ 2z + 1. One
example is the [18.6.4; 18.4.4] pattern (Fig. 10(b)), formed when
z ¼ 1. We estimate the tiling edge lengths, l, from those of the
unrelaxed barycentric embeddings. Since relaxed patterns
necessarily have smaller edge lengths, the resulting energies are
upper bounds for these tilings. Fig. 10(b) and its generalisations

imply l ¼ 2þ 5z
2
. The area of a single 333 domain depends on

the side-length of the triangle, which contains 2z unit edges and

2 in-circle radii of the unit hexagon
� ffiffiffi

3
p

2

�
, forming an equi-

lateral triangle of area

ffiffiffi
3

p

4

�
2zþ ffiffiffi

3
p �2

. It follows that

3�1=2 ¼
2þ 5z

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2zþ 1Þ

ffiffiffi
3

p

4

�
2zþ

ffiffiffi
3

p �2r

¼ 4þ 5z

31=4
� ffiffiffi

3
p

þ 2z
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2z
p : (13)

The composition of the green domain, x depends on z as

follows. The 333 triangle contains 2z:
1
2
unit squares and 2:

1
6

unit hexagons, split equally between red and blue domains, so

that

x ¼

ffiffiffi
3

p

4

�
2zþ

ffiffiffi
3

p �2
�
 
zþ

ffiffiffi
3

p

2

!
 
z

2
þ

ffiffiffi
3

p

4

!

¼ 1þ 2
ffiffiffi
3

p
z: (14)
Fig. 10 Unrelaxed barycentric embeddings of relevant high x patterns.
(a) Striped lamellae (b) [18.6.4; 18.4.4], i.e. [(12z + 6).6.4; (12z + 6).4.4]
for z ¼ 1. In (a) the labels a and t are the unit cell length and minority
domain side lengths respectively with t ¼ 2, see text for details.
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Thus, x and z are proportional so we can investigate the high
x limit via z, see below. The energy of the [(12z + 6).6.4; (12z +
6).4.4] patterns then follows from eqn (12):

Ev � 4þ 5z

31=4
	 ffiffiffi

3
p þ 2z


 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2z

p
�
3þ 2

ffiffiffi
3

p
z
��1=2

(15)

We will use this expression to explore optimal patterns in the
limit of high x.
7.1 Comparison of 2D foams with hierarchical lamellae for
large x

Recall that our simulations reveal striped lamellar patterns for
large x, rather than prismatic patterns derived from the [12z.6.4;
12z.4.4] and [(12z + 6).6.4; (12z + 6).4.4] families of tilings dis-
cussed above.

A crude upper bound for the energies for striped lamellar
patterns follows by assuming that the width of red and blue
stripes are equal and of width and height equal to 2 to
normalize the red and blue domain areas (i.e. unit area per
vertex), see Fig. 10. The edge length, l within an asymmetric
domain is 3, N ¼ 1 and A ¼ a. So,

3�1=2 ¼ 3ffiffiffi
a

p :

But the ratio of area of green to red (or blue) domains is x¼ a
� 2. So the energy scales as:

Ev � 3

ð2þ xÞ (16)

Eqn (16) and (15) allow us to compare the interfacial energies
of the striped lamellar and the [(12z + 6).6.4; (12z + 6).4.4]
patterns. Fig. 11 shows that the [(12z + 6).6.4; (12z + 6).4.4] has
slightly lower interfacial energy than the striped lamellar
pattern, and the two energy curves remain almost parallel to
very large x values.
Fig. 11 The high-x limit of the [LAM2] pattern and the [(12z + 6).6.4;
(12z + 6).4.4] pattern.

This journal is © The Royal Society of Chemistry 2014
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So the emergence of the striped lamellar pattern in the
simulations can apparently not be ascribed to interfacial energy
alone. To substantiate this, from eqn (16), we see that:

lim
x/N

Ev;½LAM2 � ¼
3

x
(17)

and from eqn (15), one can obtain that:

lim
x/N

Ev;½ð12zþ6Þ6:4;ð12zþ6Þ:4:4� ¼ 2:5

x
(18)

Eqn (17) and (18) are the upper bounds for the high x limit
derived from the unrelaxed barycentric patterns, see Fig. 10. We
can sharpen the bound in eqn (16) by relaxing the lamellar
patterns in Surface Evolver and then calculating the energies per
volume. The results are also plotted in Fig. 11, and t the
function:

lim
x/N

Ev;½LAM2 �;Relaxed ¼ 2:76

x
(19)

Since the resulting values for the relaxed lamellar patterns
are higher than the upper bound for the [(12z + 6).6.4; (12z +
6).4.4] patterns, we conclude that the lamellar pattern is dis-
favoured compared with prismatic morphologies based on [(12z
+ 6).6.4; (12z + 6).4.4] tilings of the type on the basis of inter-
facial energy alone. As stated above, the same arguments apply
to the [12z + 6.6.4; 12z + 6.4.4] sequence which has the same
limiting behavior.

Clearly, additional contributions to the free energy of these
assemblies are relevant to molecular simulations. We explore
differences between patterns expected on the basis of interfacial
energy alone and those found in various simulations in more
detail next.
8 Comparison of 2D foams with
simulated morphologies

It is fruitful to collate phase sequences found from simulations
of 1 : 1 : x 3-arm star assemblies in addition to those reported in
this paper, and to compare all of those data with the expected
Fig. 12 Comparison of phase diagrams derived from Surface Evolver calc
SCFT,19,20 MC13 and DPD.15,21 The SCFT results are divided into two parts a
cN ¼ 60 in lower half, see text for details. In general the importance of

This journal is © The Royal Society of Chemistry 2014
phase sequence determined on the basis of interfacial energy
alone, reported above. We collect those results in Fig. 12, where
distinct studies occupy separate rows in the diagram; the
studies are (from bottom to top): Surface Evolver calculations
reported here, MD simulations from the present work, Monte
Carlo simulations,13 DPD simulations15,21 and SCFT calcula-
tions.18–20 The SCFT results occupy two rows, corresponding to
two distinct segregation levels: with cN ¼ 60 and cN ¼ 30
data19,20 in the lower and upper rows respectively.

Comparison of the phase sequence displayed in the bottom
row with those in higher rows reveals the importance of inter-
facial energy and related three-coloured foam-like patterns in
explaining most – though not all – tiling patterns reported to
date. [8.8.4], [6.6.6], [8.6.4; 8.6.6], [10.6.4; 10.6.6] and [12.6.4]
patterns are realized in various simulations, in the same
sequence of x values as that found from Surface Evolver calcu-
lations. However, their absolute location on the composition (x)
axis is at increasingly lesser x values than predicted on the basis
of interfacial energy alone as one progresses from lower to
higher rows. We view this as an effect of chain congurational
entropy as discussed in the following.

Note rst that the relative contributions of chain congura-
tional entropy to the free energy of the assemblies likely
increases monotonically from bottom to top in the gure. The
bottom row, deduced on the basis of interfacial energy alone,
ignores all entropic effects. The row immediately above encodes
patterns inferred from the MD simulations reported here, that
involve short chains, subject to relatively hard potentials. The
next higher row describes DPD and MC data resulting from
simulated terpolymer assemblies with longer chains, interact-
ing via soer potential. The topmost two rows describe simu-
lated phase sequences for the SCFT calculations that model
polymers as innitely long chains. In broad terms then, the
lower sequences are relevant to small molecules, such as three-
arm star polyphiles while upper sequences are germane to high
molecular weight miktoarm copolymers. Differences in those
sequences therefore reect the increasing contributions of
chain congurational entropy.

The effect of chain entropy on the stability of various
morphologies is difficult to quantify, however entropically-
ulations and MD simulations (this work) and previous calculations using
t high x representing different segregation levels, cN¼ 30 in upper half,
chain entropy increases from bottom to top.

Soft Matter, 2014, 10, 7182–7194 | 7191



Fig. 13 A [10.6.4; 10.8.4] tiling with symmetry 4 2 from a simulation of
a 1 : 2 : 3 arm length ratio star ((2,4,6) beads). The tiling can also be
described by a [3.3.4.3.4] tiling pattern superimposed.
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favourable patterns are likely to be qualitatively coupled to their
geometry as follows. The presence of more than one distinct
domain geometry for a single A, B or C moiety of the ABC
molecules – found for example in locally inhomogeneous tilings
with more than one distinct vertex – is likely disfavoured on
entropic grounds. Thus, a very simple measure of the congu-
rational entropy is the degree of packing homogeneity, given by
the number of symmetrically distinct vertices (N) in the bar-
ycentric embedding of the coloured tiling, since that is also the
number of different domain shapes the ABC molecules must
adopt to form the tiling. A single domain shape results only
when s1 ¼ s2 ¼ s3, which form trigonal or hexagonal patterns.
The number of distinct vertices is listed in Table 1.

While this measure is appealing in its simplicity, it can not
be the full story. Indeed, some of the tiling patterns contain few
topologically distinct vertices, but nevertheless display large
differences in polygon types for a single colour, also likely to be
disfavoured on entropic grounds. For example, among all the
patterns considered here, [8.6.4; 8.8.6] and [8.4.4; 8.8.8] exhibit
the largest inhomogeneities in red and blue domain shapes
(and area fractions, corresponding to local compositions), due
to the presence of both squares and octagons for these colors. In
contrast, the [6.6.6] pattern has no such inhomogeneities. (For
this reason we have not analysed in detail related patterns
resulting from the spoke algorithm. For example, the [8.6.4;
8.8.4; 12.6.4; 12.8.4] tiling considered previously18 (spoke
pattern [2,2,2; 0,2,2]) but later dismissed as an equilibrium
structure, even when liing the 1 : 1 : x constraint,20 is unlikely
to be an entropically favoured structure.)

The observation that the [8.6.4; 8.6.6] tiling pattern is
observed in preference to the [6.6.6] pattern in an increasing
x-range as we move upwards in Fig. 12 is also consistent with
the notion of increasing importance of chain packing entropy
from bottom to top. Here an additional effect of chain entropy is
likely at work: the entropic cost of anisotropic domain shapes
(which can only be realised at the cost of reduced chain
entropy). Though the [6.6.6] tiling is topologically homogenous,
with a single vertex type, it is less favoured in terms of chain
packing frustration,46 particularly for the majority domain as x >
1. Allowing the majority domain to relax into a octagonal shape
(more round) becomes increasingly important for longer
chains, favouring the [8.6.4; 8.6.6] tiling pattern over the [6.6.6]
pattern; a very different situation from that found for ‘2-col-
oured’ interfacial energies, such as soap froths in air, where the
hexagonal honeycomb is the most stable form.

Fig. 12 reveals an increasing compositional range for the
striped lamellae from bottom to top. Recall that in the limit of
large x, this hierarchical lamellar morphology [L + C] is never
favoured on the basis of interfacial energy alone, since higher
order tiling patterns have less interfacial area per volume.
Clearly, the appearance of this pattern is a result of entropic
stabilization, as discussed briey by others.19 The ever-broad-
ening compositional window for the [L + C] pattern, appearing
at lower and lower x as we move up rows in Fig. 12 is therefore
very likely to be due to the increasing importance of chain
stretching entropy. This phase is the most striking violation of
the phase sequence expected on the basis of interfacial energy
7192 | Soft Matter, 2014, 10, 7182–7194
alone. For smaller values of x, differences between the sequence
predicted from foam-like energy alone, and simulated patterns
are less dramatic, pointing to the importance of interfacial
energy for these molecular compositions. Nevertheless, some
discrepancies between the foam model and observed phase
sequences are seen.

We note that among the tilings formed in our MD simula-
tions, two are not formed in the presence of interfacial energy
alone, namely the [8.6.4; 8.6.6] and [8.6.4; 10.6.4] patterns.
However, as shown in the inset of Fig. 9 (top), the interfacial
energies per volume for these patterns are very close to the most
favoured patterns, viz. the [6.6.6] and [10.6.4; 10.6.6] patterns, at
x ¼ 1.22, in contrast to all the other patterns. It is therefore
reasonable to infer that precisely the occurrence of these two
tiling patterns in the simulations is due in large part (though
not in toto) to their low interfacial energies. Alternatively,
additional mesophases which are entropically disfavored, but
favored on interfacial energetic grounds, are likely to be further
stabilized by, for example, adding (monomer) solvent to pure
polyphile mixtures, so that the solvent is preferentially parti-
tioned to entropically inaccessible locations for the polyphile
chains. In fact, our results here indicates that a richer poly-
morphic behavior is expected in polyphilic star self-assemblies
compared to miktoarm melts, since the chain stretching
entropy clearly destabilizes several candidate structures which
are optimal in terms of interfacial energy.
9 Self-assembly of 1 : x : y polyphiles:
a [3.3.4.3.4] tiling

Similar simulations on more general 3-arm polyphile compo-
sitions reveal a wide spectrum of chain compositions beyond
those with 1 : 1 : x fractions. We can increase the complexity of
the tiling patterns further by allowing all of the 3 arms to have
different lengths, so that the polyphile has schematic compo-
sition 1 : x : y. Evidently, the resulting phase space is far larger
than that of the 1 : 1 : x family discussed above, and our nd-
ings remain scattered. Wemention here just one result, that has
interesting implications discussed below.

In Fig. 13 we see the result from simulating a star with 2,4
and 6 beads respectively, i.e. an arm length ratio of 1 : 2 : 3. The
resulting pattern contains 4-, 6- and 8-gons containing the
lesser arms and has symbol [10.6.4; 10.8.4]. Alternatively, it can
This journal is © The Royal Society of Chemistry 2014



Fig. 15 A planar [8.2.8.4] tessellation with symmetry 2222 that is
consistent with the molecular architecture of 4-arm star polyphiles.
The pattern is formed from the [8.8.4] pattern of Fig. 6(b) by insertion
of (yellow) lenses (di-gons) in place of the spokes used to create the
(3-arm) [8.8.4] pattern. All planar tessellations that are possible
sections of 4-arm star polyphile assemblies contain these lenses, apart
from the [4.4.4.4] tiling, which is the 4-arm analogue of the [6.6.6]
tiling found in 3-arm polyphiles with composition 1 : 1 : 1.
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be described by a superimposed [3.3.4.3.4] tiling, where vertices
describe centres of the 10-gons only. The same pattern was
found to be stable with the same composition ratio in SCFT.20

This tiling is commonly known as the s phase in the Frank–
Kasper complex crystalline alloy family, and is a crystalline
approximant to the 2D dodecagonal quasi-crystal.47 The pres-
ence of this crystalline approximant lends some weight to the
possibility that these 1 : x : y polyphiles may also form quasi-
crystals, by e.g. a slight modication of the x, y values. Indeed,
2D decagonal quasi-crystals have been detected in miktoarm
copolymeric systems, with the addition of homopolymer to the
miktoarm copolymer blend.47 The possibility of forming a pol-
yphilic quasicrystal in experimental systems is therefore real,
and may be achieved by gradual tuning of the x, y parameters.
This can be done in actual polyphilic solutions by selective
solvent swelling.
10 Generalising to four-arm polyphile
prismatic patterns

The topological analysis above admits extension to star-shaped
polyphilic assemblies with four mutually immiscible arms. In
that case, degree-four tilings are required and the 4-colouring
requirement constrains the polygons to contain an even
number of sides, as for the 3-coloured patterns. Euler's relation
for degree-4 tilings implies that the average polygonal size must
be equal to four; indeed, the simplest pattern, accessible to a 4-
arm polyphile with composition 1 : 1 : 1 : 1 is the [4.4.4.4]
(square) planar tessellation. However, in three dimensions the
equilibrium morphology is actually a cellular packing, con-
jectured to be the Kelvin foam.48 Nevertheless, since the average
polygonal size is 4, prismatic patterns whose sections are 2D
planar tessellations with larger polygons than 4-gons neces-
sarily also contain 2-gons. Our simulations of 3-arm star poly-
philes suggest that the presence of these lens-shaped di-gonal
domains is unlikely for reasons discussed above. We may
therefore conclude that 4-arm polyphilic systems do not display
the wealth of 2D tiling patterns found in the 3-arm case; at least
for the interaction parameters (and coarse-grained approxima-
tions) invoked to date. It is possible, however, that tuning of the
simulation details may allow the formation of lens-shaped
domains. In those cases, a wealth of 2D patterns again appear,
Fig. 14 A decorated [1, 1, 1] pattern, with pairs of curved ‘twin’ spokes
along each direction, that meet at either hub, forming 2-sided lens-
shaped regions. The discs contain 6 degree-four vertices, and the
resulting pattern has topology [6.6.6.2].

This journal is © The Royal Society of Chemistry 2014
that are formed from the 3-arm 2D tilings by insertion of di-
gons as follows. We replace the spoke decorations used to form
the 2D tilings in the 3-arm system by curved ‘twinned’ spokes,
as illustrated in Fig. 14.

Every 3-arm tiling formed via the algorithm described above
can be morphed into a pattern that is consistent with a 4-arm
star polyphile assembly by this twinning operation, forming
lenses of the 4th arm in place of edges of the original 3-arm
tiling. A simple example is the degree-4 [8.2.8.4] pattern shown
in Fig. 15.
11 Conclusions

This paper has been motivated in part by the question of
differences in phase behavior between longer chain terpoly-
mers, and short-chained 3-arm star polyphiles. Our simulations
– most apposite to shorter-chained star molecules, such as star
polyphiles, suggest a rich polymorphism is possible beyond the
single [12.6.4] hexagonal mesophase already found experimen-
tally.27 In principle, additional mesophases are likely to form by
adding solvents that selectively dissolve in just one of the three
chain moieties. We have detected a number of novel 2D and 3D
crystalline mesophases, one of which hints at the presence of
quasi-crystallinity in these systems, a phenomenon that has
already been observed in miktoarm copolymeric melts. Most
strikingly, we nd that the range of mesophases is richer in
3-arm star molecular assemblies whose free energy is not
dominated by chain entropy, such as oligomeric star polyphiles.
This nding is in line with the analogous situation for 2-arm
systems, where amphiphilic assemblies oen display more than
the single bicontinuous morphology typically found in diblock
copolymer melts, namely the Gyroid. In amphiphiles it is not
uncommon to nd both the P, D and G in a single system as a
function of water content.49 In broad terms, we conclude that
the complex prismatic phases related to 2D tiling patterns of the
plane form in response to the interfacial energy of star assem-
blies, regardless of their molecular weights. Detailed explora-
tion of the relative interfacial energies of a variety of patterns
generated by a spoke algorithm introduced here offers a useful
Soft Matter, 2014, 10, 7182–7194 | 7193
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route to topologically feasible patterns for 3- and 4-arm star
polyphiles, as well as higher molecular weight analogues, such
as miktoarm star copolymers.
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