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Numerical simulations reveal a family of hierarchical and chiral
multicontinuous network structures self-assembled from a melt
blend of Y-shaped ABC and ABD three-miktoarm star terpolymers,
constrained to have equal-sized A/B and C/D chains, respectively.
The C and D majority domains within these patterns form a pair of
chiral enantiomeric gyroid labyrinths (srs nets) over a broad range
of compositions. The minority A and B components together
define a hyperbolic film whose midsurface follows the gyroid
minimal surface. A second level of assembly is found within the
film, with the minority components also forming labyrinthine do-
mains whose geometry and topology changes systematically as
a function of composition. These smaller labyrinths are well de-
scribed by a family of patterns that tile the hyperbolic plane by
regular degree-three trees mapped onto the gyroid. The labyrinths
within the gyroid film are densely packed and contain either
graphitic hcb nets (chicken wire) or srs nets, forming convoluted
intergrowths of multiple nets. Furthermore, each net is ideally a
single chiral enantiomer, induced by the gyroid architecture.
However, the numerical simulations result in defect-ridden achiral
patterns, containing domains of either hand, due to the achiral
terpolymeric starting molecules. These mesostructures are among
the most topologically complex morphologies identified to date
and represent an example of hierarchical ordering within a hyper-
bolic pattern, a unique mode of soft-matter self-assembly.

chirality | liquid crystals | entanglement | hyperbolic tilings |
miktoarm copolymers

Liquid crystals formed by molecular self-assembly provide
fascinating examples of complicated space partitions in soft-

material science. Relatively complex examples are the bicontin-
uous mesostructures found ubiquitously in both natural and
synthetic soft matter, including lipid–water systems and block
copolymer melts, namely the double diamond (symmetry Pn3m),
the primitive ðIm3mÞ, and, particularly, the gyroid ðIa3dÞ
mesophases. The structure of these mesophases can be described
by a molecular membrane folded onto one of the three simplest
triply periodic minimal surfaces (TPMS), namely the D, P, and
G(yroid) surfaces, named by Schoen in the 1960s (1). From a 3D
perspective, these structures are characterized by the nets de-
scribing the pair of mutually threaded labyrinths carved out of
space by the convoluted hyperbolic architecture of the TPMS.
For the gyroid, this is a racemic mixture of two chiral srs nets,
one left- and the other right-handed [the three-letter nomen-
clature follows the Reticular Chemistry Structure Resource
naming convention for 3D nets (2)]. This leads to an overall
achiral structure when the two nets are chemically identical,
which is the case in most experimentally identified gyroid liquid-
crystal structures. One such structure recently reported is
a gyroid assembly found in an ABC three-miktoarm star ter-
polymer melt (3). In this structure, the majority C component
constitutes the two labyrinth nets while the A and B minority
components together form the dividing membrane. Because of
the connectivity of the star molecular architecture and because
all components microphase separate, the A and B components

segregate on the dividing hyperbolic interface. This structure is
an experimental indication of a unique mode of self-assembly,
namely “hierarchical assembly of a hyperbolic pattern.” Com-
plementing this finding and further motivating our work repor-
ted here, a recent simulation study by one of us (J.J.K.K.)
explored self-assembly of blends of equal amounts of two distinct
three-miktoarm stars, namely ABC and ABD three-miktoarm
star terpolymers (Fig. 1). Both molecules were assigned equal
molecular weights, and the proportions of the equal volume C
(green) and D (yellow) chains relative to the equal A (red) and B
(blue) chains were varied (4). Despite these severe compositional
constraints, a number of unique four-colored mesophases were
revealed. The most striking feature of the predicted phase be-
havior in this system was the presence of interesting patterns
whose general features are reminiscent of the gyroid, albeit far
more complex in both geometric and topological aspects. In the
system reported here, two ordering regimes form. At the larger
length scale, ordering induces a gyroid-like membrane, which is
itself also spontaneously ordered at a smaller length scale, giving
unique microdomain patterning due to the membrane confine-
ment to a hyperbolic curved interface. Each of these patterns
contain distinct numbers and types of interwoven 2D and 3D A
and B domains forming nets of equal hand, immersed within the
hyperbolic interface between an enantiomeric pair of C and D srs
nets. These structures are spectacularly convoluted in 3D
space and correspond to special members of a sequence of chiral
cubic patterns that emerge by local striping of the gyroid mem-
brane. We demonstrate how this is performed systematically by
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mapping a particular family of tilings in the hyperbolic plane
onto the gyroid in 3D euclidean space. Careful analysis of the
morphologies formed in the simulations, described below, reveals
the presence of up to three distinct chiral cubic mesophases
within this striped gyroid region of the phase diagram. We ex-
plore the geometric and topological variety of these self-assem-
blies in detail and discuss how they emerge as a response to
a hierarchy of frustrations imposed by the three-arm star mo-
lecular architecture, acting in both two and three dimensions.

Molecular Simulations
ABC and ABD star molecules are constructed by linking three
(distinctly colored) arms to a central junction bead. Each arm
contains strings of beads whose lengths are tuned appropriately
to form ABC and ABD stars whose number ratios are 1 : 1 : x, as
shown in Fig. 1A. Interactions within and between molecules are
governed by potentials that induce segregation of unlike colored
beads. The simulation setup (described in more detail in SI Text)
has previously been used to successfully predict complex self-
assembly behavior in related polymer systems (4–8). A series of
typical simulated mesostructures formed by these molecules is
illustrated in Fig. 1 C–G for different values of the composition
parameter x defined in Fig. 1A. Despite the structural complexity
of these four-colored patterns, they display spatial order and
some degree of symmetry, apparent on visual inspection. For
x< 1:75, four-colored columnar phases appear, and for x> 7, a
hierarchical lamellar pattern is predicted (4). Over the window of
compositions with x between 1.75 and 7, a variety of more
complex morphologies consistently emerge. The two majority
components (green C and yellow D) of the star molecules self-
assemble to form segregated three-periodic domains consisting
of an enantiomeric pair of interwoven labyrinths, whose channels
lie on edges of left- and right-handed srs nets, as shown in Fig.
1B. Those labyrinths are separated by a gyroid-like film, con-
taining the domains formed by the terpolymers’ minor compo-
nents (blue A and red B). Unlike conventional bicontinuous
gyroid mesophases (9), the C–D net pair is composed of distinct
chemical moieties, so the (colored) pattern is chiral, with space
group symmetry I4132 analogous to the alternating gyroid found
in linear ABC terpolymer melts. The identification of the sim-
ulated patterns with the gyroid is supported by structure factor
calculations of the C and D domain coordinates within the cubic
volume. The C and D domains yield identical spectra displaying
a series of peaks consistent with those expected from srs nets
with space group symmetry I4132 as shown in SI Text. More
detailed quantitative analysis of the geometries can be done
using various radial distribution functions (RDFs) calculated
from the coordinates of the simulated patterns. This analysis is
described in detail in SI Text. On the basis of these crystallo-
graphic and geometric arguments, we conclude that the star-
molecular assemblies form AB bilayers, composed of a pair of
back-to-back AB monolayers of constant thickness facing both
sides of the gyroid (and the C and D domains). As this overall
gyroid structure is a feature of all of the structures described

here, in the following we will focus on the AB film separating the
C and D channels.
As can be seen in Fig. 1 C–G, the simulations also clearly

reveal segregation of the minor A and B components within the
gyroid film that separates the C and D labyrinths. The A and B
domains typically form multiple stripes around the channels of
the gyroid, and their multiplicity around each channel varies with
x. Furthermore, individual stripes regularly branch at threefold
junctions, as seen in Fig. 1 C–G and both A and B domains
typically extend indefinitely over the curved gyroid film. The A–A
RDFs are indistinguishable from the B–B RDFs (SI Text), in-
dicating that the A and B domains are structurally identical. The
simulated morphologies therefore consist of a pair of congruent
(with inversion) 3D C and D labyrinths, separated by multiple
congruent condensed A and B domains. The A and B domains
are well described by reticulations of the gyroid with two-colored
versions of regular, dense hyperbolic forests of degree three and
related branched-ribbon tilings (10–13), described next.

Hyperbolic Forests on the Gyroid
Just as the euclidean plane can be tiled (or striped) by infinite
parallel ribbons, the hyperbolic plane ðH2Þ can be tiled with
“ribbons” or tree-shaped “branched ribbons,” (Fig. 2 A and B).
However, the wealth of 2D hyperbolic tessellations far outstrips
planar examples. Identification of tilings relevant to the striped
gyroid structures requires some familiarity with hyperbolic ge-
ometry and symmetry. In particular, the exotic parallelism of
hyperbolic space allows the reticulation of H2 with arrays of trees
(i.e., infinite graphs without cycles), provided their edges are
sufficiently long (11). “Regular” trees, with symmetrically equiv-
alent edges and vertices (of any degree or branching order ex-
ceeding one), can be embedded in H2 such that symmetry op-
erations exchange edges and vertices. Those isometries can be
used to build infinite arrays of regular trees that reticulate H2.
Because the disjoint trees are close-packed in H2, we call such
reticulations “regular, dense forests” (11). These forests also
define 2D “free” tilings of H2 that are unbounded in at least one
direction, as illustrated in Fig. 2 A and B. These are analogous to
tilings of the euclidean plane by infinite parallel strip-like ribbons.
Free tilings of H2 can be mapped onto the gyroid, forming free

tilings on the TMPS. This mapping necessarily involves some
distortion compared with the perfectly homogeneous geometry
of H2, due to the curvature anisotropy of the gyroid compared
with H2. An unlimited number of tilings can be realized, whose
homogeneity varies, breaking the degeneracy of these patterns in
H2. Among those tilings, regular free tilings most closely mimic
the free tilings on H2 because they are realized on the gyroid with
maximal symmetry, forming quasihomogeneous tiles. These max-
imally symmetric free tilings are formed by regular, dense forests.
Regular, dense forests with threefold, fourfold, and sixfold verti-
ces, composed of degree-three, -four, and -six trees, respectively,
have been constructed on the gyroid TPMS (10–12). These forests,
composed of degree-k trees, have orbifold symmetries *222k,
2*2k, and 222k, where k = 3, 4, 6. [Here, we adopt Conway’s

Fig. 1. (A) Model ABC and ABD three-miktoarm star terpolymer molecules. All molecules contain equal-sized A (red) and B (blue) arms, and longer C (green)
and D (yellow) arms, also of equal size. The parameter x (equal to 8=4= 2 in this image), corresponds to the number ratio of C to A beads. (B) C and D domain
geometry, a pair of intertwined srs nets. (C–G) Single-unit cell snapshots illustrating the curved striped pattern formed by the minority components A and B
for varying x. (C) x = 2, (D) x = 3.33, (E) x = 3.67, (F) x = 5, and (G) x = 6. Note the threefold branching of the stripes for all values of x.
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orbifold notation (14).] The k = 3 solutions are particularly el-
egant: the threefold vertices occupy the least curved flat points
on the gyroid (with threefold site symmetry), linked by edges into
disjoint trees in various ways. Further details can be found in SI
Text and elsewhere (10–13). We discuss below the relative stabili-
ties of various regular degree-three patterns and resulting stripe
geometries, which depend on extrinsic features of these forests.
Striped patterns, like those observed in the simulations, can be

formed by coloring adjacent branched-ribbon tiles alternately
red and blue. Because the edges of branched-ribbon tiles are
vertex-free, and all edges bound two adjacent tiles, two coloring
is possible for all branched-ribbon tilings. In contrast, ribbon
tilings contain vertices, where more than two domains meet. This
feature is incompatible with two coloring, because alternately
coloring domains around a common vertex will result in fusion of
domains at the vertex (and along common edges when the tiling
is derived from degree-k forest where k is odd). Because the
stripes seen in the simulations invariably contain threefold
branches, relevant branched-ribbon tilings must be found among
forests of degree three. It turns out that branched-ribbon tilings
whose central spines are regular, dense hyperbolic forests of de-
gree three—the most symmetric possible degree-three stripings of
the gyroid—describe the principal features of the striped gyroid
patterns observed in our simulations.
An unlimited number of these regular, dense, degree-three

forests can be constructed geometrically from decorations of 2D
orbifolds that cover the gyroid. The orbifolds *2223 and 2*23
each yield a single dense, regular forest of degree three; the 2223
orbifold gives rise to a two-parameter family of forests (10, 12).
Furthermore, all 2223 examples lead to two distinct branched-
ribbon tilings on the gyroid, due to the pair of covering maps to
the gyroid for H2 for all forests in this class (15) (see SI Text).
The most symmetric forest (*2223) has hyperbolic edges of

length cosh−1(3) (measured in H2). It is illustrated in Fig. 2B
along with its corresponding branched-ribbon tiling. That forest,
whose edges are the shortest of all regular, dense forests, maps
onto the gyroid to form a pair of disjoint but mutually threaded
curvilinear nets, whose edges run between neighboring flat
points of the gyroid (Fig. 2C). The resulting 3D pattern is an
interwoven pair of identical chiral nets, with curved edges, il-
lustrated in Fig. 2D. Each net has the topology of the srs net
(16). Other regular, dense forests with longer edges can be built
that link successively more distant pairs of flat points. A series of
structures within this family, with increasingly long edges, is
shown in the top row of Fig. 3, labeled by their hyperbolic edge
lengths. Recall that the labyrinths of the gyroid also describe an
enantiomeric pair of interwoven srs nets; however, the pattern
formed by the cosh−1(3) forest on the gyroid is very different,
because it contains mutually threaded, equivalent enantiomers.
All regular, dense forests on the gyroid necessarily form inter-

growths of regular, crystalline nets (with symmetrically equivalent
edges and vertices in both 2D hyperbolic and 3D euclidean space).
Only two embeddings of degree-three graphs in 3D euclidean

space are regular: the 3-periodic srs net and the 2-periodic hcb
pattern (17). With one exception, the regular degree-three for-
ests explored here (shown in Fig. 3) form multiple threaded
curvilinear chiral nets (of equal handedness) whose topologies
are that of the srs net. The number of disjoint srs nets making up
the gyroid film is either 2 or 54, as listed in SI Text, and each
member has a distinct mode of net entanglement (11, 12). The
forest with edge length cosh−1(15) maps onto the gyroid to form
chiral arrays of warped, mutually threaded hcb patterns, oriented
perpendicular to the four (111) directions of the gyroid unit cell.
All of these patterns embed in 3D space to form chiral cubic

structures, with space groups P4132 (or P4332 for the other en-
antiomer) or I213. Identification of each distinct pattern is,
however, difficult from usual crystallographic considerations due
to structural defects in the minority domains of the simulated
patterns. However, a useful fingerprint of the various regular
forests emerges from the distinct windings of the forest edges
around channels of the gyroid. The number of edges packed
around a channel (the stripe number) is dependent on the edge
length, or forest type, providing a fingerprint for each regular
pattern. (In technical terms, the construction is related to the
homotopic class of the tree embeddings on the TPMS for each
forest). Due to the symmetry of degree-three regular forests, the
edge wrappings onto the gyroid fall into two distinct classes for
each forest, with different stripe numbers around the channels
of either class. A signature of ideal, defect-free regular forests
consists of the pair of numbers, corresponding to the stripe
numbers wrapping around each channel class. They are listed for

Fig. 2. Geometric modeling of close-packed degree-three forests. (A and B) Reticulation of H2 by a regular, dense forest with edge length cosh−1(3) (full
lines) and the separating geodesics (dashed lines) that define tilings of the hyperbolic plane: (A) A single infinite tile of a ribbon tiling. (B) A single infinite tile
of a branched ribbon tiling whose spine is a single degree-three tree. The hyperbolic plane is drawn in the Poincaré disk model and decorated by triangular
tiles. (C) Mapping of the spines of a two-colored branched ribbon reticulation onto a unit cell of the gyroid. (D) The resulting 3D nets upon removal of the
gyroid surface: a pair of interwoven chiral srs nets of like hand.

Fig. 3. (Top) A range of regular, dense degree-three forests on the gyroid,
labeled by integers y, denoting forests with edges of length cosh−1(y).
(Middle) The subset of three forests that match most closely simulated
morphologies (Bottom).
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the simpler regular degree-three forests in SI Text. Given that
a pair of stripe numbers is characteristic of any such tiling, these
data afford robust identification of the underlying tiling gener-
ated in these simulations, in the absence of structural defects.
To identify the relevant tilings, we have estimated stripe

numbers by counting the number of distinct red and blue stripes
winding around channels of the gyroid in the simulated struc-
tures (Fig. 4). Because the patterns contain defects (to be dis-
cussed in more detail below), the counts are statistical in nature
(presented in full in SI Text). In some cases, domain branching in
the vicinity of the channels, due to the presence of defects, does
not allow definitive counts. However, despite that uncertainty,
the data are consistent with three—and only three—of the sig-
natures belonging to the degree-three branched-ribbon tilings.
Those forests are the degree-three regular forests with edge
lengths cosh−1(15), cosh−1(53), and cosh−1(195), all from the
same member of the pair of covering maps. Note that a pair of
stripe numbers characterizes each forest, marked in Fig. 4. In-
dividual stripe numbers occasionally diverge from the values
expected from these three forests, but the pairs of numbers are
consistent with those cases only, as shown in Fig. 4. These sta-
tistics do not allow us to firmly conclude whether transitions
between these three forests are first or second order. However,
the quasicontinuous nature of the plots as a function of x lead us
to tentatively conclude that transitions between the distinct for-
ests may be thermodynamically of second order, mediated by
topological defects whose precise forms remain unclear.
In addition to the likely presence of topological defects within

the generic patterns found in our simulations, geometric defects
due to the inherent chirality of these patterns are found, which
induce deviations of domains from the ideal srs topology. This
is because the covering map from H2 to the gyroid can realize
either left- or right-handed patterns. The degree-three forests
reticulate the gyroid in two distinct orientations, related by
rotations about the surface normal vector through any flat point
by π

3. (Examples of both reticulations are shown in Fig. 5 and in SI
Text.) Given that the star terpolymeric molecules in the co-
polymer simulations are achiral, left- and right-handed domains
are equally stable in the self-assembled system. Indeed, patches
of curvilinear srs or hcb nets of either enantiomeric form are

visible at different locations, giving achiral patterns (Fig. 5).
Structural defects associated with this feature likely account for
some differences between the ideal regular forests and the sim-
ulated morphologies, including occasional variations in the stripe
number statistics around channels, as well as small differences
between simulated and ideal RDFs described below.
Given the presence of these defects, we have explored in more

detail simulations for x= 4, for which the stripe numbers are
indicative of the cosh−1(53) forest as the closest defect-free
model. In Fig. 5, the ideal cosh−1(53) forest and simulated
structures are compared directly along different crystallographic
directions. This structure is stable over a large range of simula-
tion box sizes (see SI Text). RDFs for the correlations between
junction beads in opposed monolayers reveal gradual and con-
tinuous small variations, suggesting continuous structural varia-
tions within a single “parent structure,” consistent with our
hypothesis of second-order transitions between distinct forests.
The identification of this parent structure as the defect-free
cosh−1(53) forest is further supported by comparison of these
RDFs with those of a model structure, based on this regular
forest (see details in SI Text). The calculations show excellent
agreement between the simulation and model, as illustrated in
Fig. 6. In summary, we conclude the following: The A and B
domains form two-colored branched tilings on the gyroid, as
illustrated schematically in Fig. 3. Three examples are found.
Those three tilings are derived from the dense regular forests in
H2 with edge lengths cosh−1(15), cosh−1(53), and cosh−1(195)
and are compared directly to simulation snapshots in Figs. 3 and
5. Defects that deform the patterns from those ideal geometries
are also found, some of which may stabilize the patterns at in-
termediate concentrations, allowing second-order transitions be-
tween these forests.

Minimally Frustrated Striping of the Gyroid
The formation of these complex morphologies can be ascribed to
the dominant driving forces for self-assembly of copolymer melts,
namely the maximization of chain entropy of each constituent
block and the minimization of interfacial surface tension, subject
to the topological constraints of the star-shaped molecules. Be-
cause the interactions within each block are identical, and the
number of beads of both minor blocks are matched, as are the
bead numbers in both major blocks, the formation of geomet-
rically equivalent C and D domains, as well as A and B domains, is

Fig. 4. Statistical variation of the number of A and B stripes packing around
channels of the gyroid present in the simulated patterns as a function of the
composition parameter x. The stripe numbers were counted around various
channels of the unit cell (SI Text), and the intensity of the greyscale reflects
the frequency of various stripe numbers. Compare data from tables in SI
Text. The different forest and their pairs of stripe numbers are indicated on
the Left.

Fig. 5. Comparison of ideal left- (L) and right-handed (R) patterns from the
regular forest with edge length cosh−1(53) (top and middle rows) viewed
from various directions with a self-assembled morphology formed in a sim-
ulated mixture of terpolymers with x = 4 (bottom row). Matches between
the simulated morphologies and ideal left- and right-handed patterns are
visible in distinct patches of the unit cell, which is therefore of mixed
chirality.
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expected. Regular, dense forests on the gyroid offer an elegant
spatial solution to this structural constraint.
These patterns are hierarchical self-assemblies, with two dis-

tinct length scales, resulting from two independent sources of
geometrical frustration. The relative volumes of major and minor
blocks enforce a curved interface between major and minor
domains, and the formation of the gyroid-like interface can be
explained by usual copolymer melt theory (e.g., ref. 18). The
gyroid morphology emerges as the least frustrated embedding
of a hyperbolic film with as far as possible constant (negative
Gaussian) curvature and uniform labyrinth channel radii (19,
20). Segregation of A and B domains within the gyroid film is
driven by the relative dimensions of the A and B blocks. These
are equal, so equivalent domain morphologies are expected for
each block. If those minority components were to self-assemble
on a flat rather than a hyperbolic film, a lamellar pattern with
alternating A and B ribbons would be expected. This is precisely
what is found at slightly higher values of x where the formed
morphology is a hierarchical lamellar structure (4). Unbranched
striping is, however, impossible on the gyroid due to its nontrivial
topology, and the presence of branches necessarily induces
nonuniform stripe widths in the A and B domains. The relative
energy of a branched ribbon can be estimated to lowest order
from simple geometric considerations, outlined in SI Text. Those
estimates show that threefold branched ribbons minimize the
energetic cost associated with variations of ribbon width. We
propose that the patterns form to minimize two independent
sources of frustration, both associated with polymer chain packing.
First, the gyroid forms, to minimize frustrations associated with
the larger scale assembly, namely the (AB)–C and (AB)–Dpacking.
Second, threefold branched stripes on the gyroid associated with
regular, dense forests minimize the cost of variations in A and B
stripe widths.
Given that these assemblies form dense regular forests on the

gyroid, it is at first sight surprising that other forests, such as those
with edge lengths cosh−1(3), cosh−1(5), and cosh−1(99) are not ob-
served in these simulations (Fig. 3). These other examples have
very similar local geometry, but the theoretical stripe numbers
listed in SI Text illustrates that they have very different config-
urations in 3D space. Indeed, the patterns found in the simulations
are those with identical domain packings around both channel types
[edge cosh−1(53)] or nearly so [edges cosh−1(15) and cosh−1(195)],
as seen in Fig. 4. This observation too can be explained by the
tendency to form patterns whose ribbon width variations are min-
imized. Low-order branching affords minimal variations of widths
along their length. However, differential geometric considerations
imply that the variations in ribbon width from one side of the bi-
layer to the other depend on the direction of the ribbons with

respect to the principal directions in the gyroid (their tangential
direction in the surface) (21). In general, stripes are thinner on one
side of the gyroid than the other. Now the ribbon dimensions de-
pend on their extrinsic orientation in the surface. If they align with
principal directions, the ribbon laminae thin as one moves from the
gyroid toward one labyrinth (e.g., C), and thicken to the other (D).
However, if they follow the asymptotic directions on the surface,
their width decreases symmetrically to both sides (21). The specific
forests found in the simulations therefore result in nearly identical
monolayer domains on either side of the gyroid, allowing the pair
of AB monolayers to be realized with equivalent local molecular
conformations. A useful measure of the deviations of tree edges
from asymptotic directions is afforded by the pair of stripe num-
bers. If they are matched, the directions are asymptotic. Notice
then that the forests that fit best our simulations are precisely
those with matched or nearly matched stripe numbers (SI Text).
We remark in passing that this constraint is a subtle one on the
gyroid, due to the exotic extrinsic embedding of this minimal
surface. In contrast, patterns formed on its related P and D
minimal surfaces are more readily identified and will be discussed
elsewhere.

Final Remarks
In summary, we find excellent agreement between simulations
and a model of self-assembly of ABC and ABD star copolymers
forming ABC and ABD monolayers molded to either side of the
gyroid. The AB domains together form a gyroid film that sepa-
rates the (right- and left-handed) srs labyrinths made of C and D
domains. Sequestration of A and B beads within the film re-
sults in three distinct chiral, cubic branched-ribbon tilings of the
gyroid, related to the mapping of regular, dense degree-three
hyperbolic forests to the gyroid. Patches of both left- and right-
handed morphologies are found in our simulations. The forests
formed result in particularly equal dimensions in both A and B
monolayer domains in three dimensions. Those dimensions are
a result of the extrinsic embedding of hyperbolic patterns in 3D
space via the gyroid.
The 3D structures of enantiomerically pure versions of these

morphologies are extraordinarily complex. Two of the three
distinct patterns—with edge lengths cosh−1(53) and cosh−1(195)—
consist exclusively of interwoven srs nets, with either 2 or 54 like-
handed srs nets alternating between A and B domains, immersed
in a racemic pair of C and D srs domains. The third structure
found in these simulations [with cosh−1(15) edges] contains a ra-
cemic intergrowth of three-periodic srs C and D domains wound
between four interwoven families of convoluted hcb (chicken-
wire) nets, each containing either an A or B domain. Each family
is oriented normal to a (111) direction. These intricate self-
assemblies of liquid-like domains rival, and indeed in some respects
mimic, the complex interwoven networks in synthetic metal-
organic framework (MOF) molecular crystals (22). For example,
a MOF containing a “record” intergrowth of 27 left- and 27
right-handed srs nets has been reported recently (23). That
pattern is related to the chiral 54 srs structure described here.
Despite these very convoluted 3D forms, the structures we report
emerge as the optimal solutions to the problem of combining
hyperbolic films—driven by asymmetry between larger C and D
blocks compared with the A and B blocks—with in-film segre-
gation into equal domains. The shapes that result are those that
are most nearly homogeneous in 3D space, and their structural
complexity is driven by inherent frustration at two levels: the
curvature and packing frustration relieved by the formation of
the gyroid, and the domain width frustration relieved by forming
degree-three tilings around regular, dense forests. The resulting
chiral multiply threaded patterns are spectacular; they are surely
among the most complex self-assemblies identified to date.
An important question is whether these extraordinary meso-

structured self-assemblies may also be realized in other (simpler)

Fig. 6. RDFs from A–B bead correlation at x = 4 compared with model
calculation based on ideal geometries with points lying on separating geo-
desics derived from the cosh−1(53) tiling.
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molecular melts, for example containing only one species of ABC
star terpolymers. There are no geometric or topological reasons to
exclude their formation. However, it is well known from linear
block copolymer systems that the phase windows for complex
network morphologies are different in AB and ABC systems. For
example, both the (alternating) gyroid and the Fddd (O70) phase
windows are significantly smaller in AB diblock melts (24–26)
compared with linear ABC triblock melts. The rationale behind
this is that the addition of an extra component disrupts the balance
between entropic and enthalpic free energy contributions when
the composition is also unbalanced (27, 28) as is the case in this
context. We therefore expect the phase window to be smaller in
a pure ABC star system compared with the ABC–ABD binary
blend investigated here and as a result more difficult to locate in
theory or experiments. Furthermore, even if formed, it is uncertain
whether a pure ABC star melt would stabilize the striped gyroid
over a sufficiently broad composition range to admit the structural
polymorphism reported here for binary blends. However, our

simulations model a melt blend with no polydispersity, symmetric
interaction parameters between blocks, and with a single chain of
each species. Therefore, in practice, the rigid constraints imposed
in this study can be relaxed, possibly effecting a broader region of
existence even in a pure ABC melt. For example, adding extra
arms of the different species is known to expand phase windows of
curved structures in star copolymer systems (7, 29). Given current
activity in exploring melts of miktoarm copolymers, we anticipate
the discovery of these and related liquid crystalline phases in
mesostructured materials in the near future.
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S1. Molecular Simulations
We have explored the self-assembly of an initially randomly dis-
persed mixture containing equal numbers of ABC and ABDmodel
miktoarm star copolymers with dissipative particle dynamics sim-
ulations following the implementation described elsewhere (1–4).
All simulations are performed in a cubic box of volume L3 with
periodic boundary conditions and constant bead density ρ= 3.
A number of runs with different box sizes were done to ensure

that the morphology is indeed equivalent to that of bulk equi-
librium, rather than a structural artifact, induced by confinement.
This protocol is described in detail elsewhere (3). Box sizes were
tuned to accommodate a single (conventional cubic) unit cell of
the pattern. Simulations were run using the ESPResSo package
(5) and simulation snapsnots were made with either Houdini or
the VMD package (6). To reduce the effect of random fluctu-
ations of the patterns, all of the simulated morphologies shown
and analyzed here are the result of averaging a series of distinct
snapshots. We emphasize that the structures discussed in the
paper are robust, formed repeatedly by a number of simulations.
Interactions within each arm are governed by an harmonic
bonding potential, VBOND = C

2ðrij − r0Þ2 with r0 = 0 and C= 4.
Unbonded beads interact with each other according to the
soft potential VSOFTðrijÞ= 0:5 · aijð1− rijÞ2, where rij measures the
distance between particles i and j. We integrate the equations
of motion using a standard velocity-Verlet algorithm with time
step Δt= 0:02. For like particles, the interaction parameter is
aij = 25. For all unlike polymer species, we assume symmetric cross
interactions and set aij = 60 with the exception that the single
junction bead in each molecule is set to be neutral and thus acts
as a like particle to all species. Also, for the highest x values in-
vestigated, the self-assembled gyroid structures were simulated for
an additional period with an increased interaction parameter
ðaij = 80Þ between the minority components A and B to get slightly
better segregated structures for visualization and analysis.

S2. Structural Parameters from Simulations and Ideal
Models
Fig. S1A shows representative radial distribution functions (RDFs)
of various combinations of simulation constituents. Thus, A–A
refers to the RDF of A beads with themselves; A–B, the RDF
between A and B beads; and so forth. The two most important
RDFs are those for the A–B and JC–JD (ABC and ABD junction
bead) correlations. The latter RDF quantifies the monolayer–
monolayer correlation across the dividing AB bilayer film. We
use the A–B RDFs to compare with model calculations from the
ideal forests and the JC–JD RDFs as a measure of the mem-
brane thickness, both described below. All peaks used are
fitted to Gaussian peak shapes to extract structural parameters.
In Fig. S1B, a series of simulation RDFs are shown, all for x= 4.

They illustrate the range of box sizes over which it is possible
to stabilize these complex structures. A continuous change in the
peaks is observed throughout this range. The apparent discon-
tinuity in the RDFs (lines 6–7 from bottom) is due to a jump in
box size visible in Fig. S1C where the stripe width determined
from the RDFs is plotted as a function of box size.
These RDF data give measures of various characteristic lengths

in the patterns, and their variations with the molecular compo-
sition x, allowing quantitative analysis of the geometry of the
hierarchical assemblies. Consider first the larger scale self-
assembly formed by the condensed AB film. The simulated mor-

phologies have a clear trend of decreasing AB membrane thickness
with film volume fraction (increasing composition parameter x).
This can be modeled assuming the A and B domains form a film of
constant thickness 2ℓ wrapped on a minimal surface. The variation
of ℓ is dependent on the curvatures and surface area-to-volume
ratio of the curved surface that lines the bilayer, therefore affording
a specific geometric measure of the AB bilayer geometry. We
model the variation of ℓ from differential geometric arguments,
assuming the film is bounded by parallel monolayers (7). The
RDFs for the two-point correlations between star junction sites in
the ABC and ABD monolayers display a peak at low distance, and
scales with ℓ. The variation of this peak position with the molecular
composition parameter, x, is in excellent agreement with that ex-
pected from the differential geometric model, as shown in Fig. S2B.
That agreement, with just one adjustable parameter (related to
local random fluctuations from the ideal smooth film geometry
caused by thermal motion and film granularity), implies that the
film has topology and surface area very close to that of the gyroid.
We have constructed model structures from the ideal forests as

follows: points are sampled from the separating geodesics in the
gyroid that are constructed from the degree-three regular, dense
forests (built within the Houdini package). Parallel displacement
of those points in the surface along surface normals by a distance
determined from the equations in Section S4 then define model
monolayer sites. Bilayer coordinates are formed by adding an
additional set of points formed by equal parallel displacement in
the opposite direction of normals.
By adding noise, we can blow up lines to volumes to mimic the

striped patterns from the simulations. The correct noise level is
thus at about one-half the stripe width. All point locations are
randomized by displacements of 0.05 in arbitrary directions. The
exact magnitude of the noise is determined from the RDF cal-
culations so that the resulting point domains do not overlap (this is
easy to detect from a rise in the RDF at low r values). RDFs are
calculated via Mathematica for a point cloud containing a central
genus-5 conventional cubic unit cell surrounded by 26 adjacent
cells sharing faces, edges, and vertices with the central cell.
Fig. S3 shows two examples of randomized forests. In Fig. S3A,
the points all lie on the forest geodesics, whereas in Fig. S3B,
the geodesics have been deformed by hand to form A and B
ribbons within the gyroid of nearly constant width. This de-
formation is necessary to get good correspondence between
simulations and model calculations because the broad region
around the branch points in the geodesic structure is too far
from the stripe arrangement in the simulations. A result for
the forest 53 model structure compared with the simulation
RDF is shown in Fig. 6 in the main text.

S3. Hyperbolic Forests and Free Tilings
Infinite families of regular, dense forests occur in H2, charac-
terized by their vertex degree (k say), 2D hyperbolic symmetry
[described by their Conway orbifold symbol (8)], edge length
(measured in absolute units in H2), and covering map (9, 10). A
subset of those are commensurate with the gyroid, giving a family
of dense regular branched-ribbon tilings on the gyroid (9, 10).
The map from H2 to the gyroid is subtle, in that a pair of covering
maps can be built, allowing up to two distinct 3D realizations of
a single dense forest in H2 (Fig. S4). We consider only one of
those families, as the other results in highly curved structures with
very unequal stripe numbers, not relevant to our patterns as ar-
gued in the main text. In addition, a single map can be oriented in
two possible ways in the gyroid, giving either left- or right-handed
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nets (11) (Fig. S5). Some regular, dense forests map onto the
gyroid to form crystalline nets in 3D euclidean space. In general,
multiple, mutually entangled intergrowths of these nets result (9,
10), exemplified in Fig. 2D in the main text.
Tilings can be constructed in the gyroid by mapping the forests

to the gyroid (e.g., Fig. S6 A and B). Adjoining trees are sepa-
rated by infinite (along one direction only) strip-like domains
that describe faces of regular “ribbon tilings” of H2 (Fig. 2A in
main text). Ribbon tiles are infinite polygons, bounded by ver-
tices that are common to k tiles. The central axes of these tiles lie
on separating geodesics of H2 that are equidistant from adjacent
trees (12). Vertex-free “branched-ribbon” tilings are defined by
the faces that lie between these geodesic edges (Fig. 2B in main
text) (9, 10). An example is illustrated in Fig. S6C.

S4. Monolayer Film Thickness
Our simulations yield periodic srs nets with eight degree-three
vertices within a single cell, corresponding to the conventional
cubic cell of the I4132 net, with genus five, or Euler–Poincaré
characteristic, χ = − 8. We assume that the pair of parallel
monolayers run through the junction beads of the assemblies,
cleaving them into halves, one within the bilayer and the other in
the labyrinths (containing the C and D fractions). The volume
fraction is then given by the following:

Φ=
2+ x

2nc

2+ x+ x
nc

; [S1]

where nc is the number of C beads in each molecule. We have
calculated the RDF expected for junction beads, assuming they lie
on a pair of parallel surfaces either side of the gyroid, with thickness
2ℓ. As an example consider a situation with ℓ

a= 0:14. In the absence
of noise, the RDF exhibits a sharp peak at 0.14, as expected. Im-
posing random displacements up to 0.05 gives a peak located at
0.17. This implies a bilayer thickness of ∼80% of the location of the
RDF peak. We scale those values by the lattice parameter to
arrive at ℓ

a values illustrated in Fig. S2B.
We derive the theoretical variation of bilayer thickness using

standard differential geometry (13). Suppose the pair of AB mon-
olayers are parallel to a midsurface with zero mean curvature, and
Gaussian curvature, K, and displaced by ℓ to either side. Differential
geometry implies the following:

Φ=
3jK j12ℓ
2

�
1+

Kℓ2

3

�
; [S2]

or, in terms of the average radius of curvature, R=K−1
2:

Φ=
1
2

"
3ℓ
R
−
�
ℓ
R

�3
#
: [S3]

We can express R in terms of the lattice parameter a via the

dimensionless “homogeneity index,” H, defined by Hd A
3
2

ð−2πχÞ12a3
,

where A is the area of the midsurface per unit cell, and 2πχ is the
integral (Gaussian) curvature of the midsurface over the unit cell.
The global Gauss–Bonnet theorem implies that A= − 2πχR2,
so that

ℓ
a
=
� H
−2πχ

�1
3 ℓ
R
: [S4]

This relation can be used in Eq. S2 to deduce the variation
of ℓ

a with Φ, used to form the theoretical gyroid curve in Fig.

S2B, substituting the homogeneity index for the gyroid
(0.7665. . .).

S5. Estimate of the Energy Cost Associated with Branches
The stripes define a vector field on the surface that must respect
Hopf’s theorem, which relates the singularity indices of the field
ðsiÞ to the surface topology, e.g., χuc (its Euler characteristic per
unit cell) (13): X

uc

ðsiÞ= χuc; [S5]

because the gyroid has nontrivial topology ðχuc < 0Þ, singularities
of negative index are unavoidable, in contrast to the smooth
unbranched director field induced by the parallel lines of a striped
flat sheet. If the streamlines have branches of degree z, the as-
sociated singularity index, si = 2− z

2 (Fig. S8A). A balance is there-
fore expected between fewer, higher-order branches per unit cell
and more low-order branches.
Assume that each A and B ribbon has a preferred branch width

from a preferred value ð2w0Þ, set by the number of beads of the A
and B chains. The unfrustrated state thus consists of ribbons
whose widths adopt that preferred value along their length. This
is, however, impossible for branched ribbons, whose widths in
the vicinity of the singularity increases. A crude estimate of the
energy associated with a singularity on a flat sheet can be ob-
tained by assuming the ribbons are of width 2w0 everywhere
except within regular polygons with z edges, with area aðzÞ=
zw2

0 tan
�
π
2z

�
, illustrated in Fig. S8B. Within that polygon, the ribbon

width is extended to a maximum distance of w= w0

sinðπzÞ. Because the
chains lie parallel to this midsurface, they pack at constant density
and occupy a film of constant thickness, bounded by interfaces
between the minor and major domains on both sides of the
surface. The domain volume associated with the singularity
then scales with polygon area. Assuming the chain free energy
scales with the chain extension as ðw−w0Þ2 per chain, the ad-
ditional free energy associated with the singularity scales with
degree as aðzÞw. The total free energy per unit cell of fixed size
(set by the ABC, ABD molecular fractions) is therefore the
following:

E≈ 2χuc
z tan

�
π
2z

�
ð2− zÞsin2�πz� [S6]

(where χuc = − 4).
This free-energy estimate rises from z= 2, forming a maximum

around z= 5 followed by slow decay (Fig. S8C). Equation S5
demands branches of degree at least three on the gyroid, since its
Euler characteristic per unit cell is five. The crude energy anal-
ysis therefore suggests that order-three branching on the gyroid
is the most stable configuration.

S6. Raw Data for Stripe Numbers in Various Simulations
Table S2 shows counts of the stripe numbers as a function of x.
These data were collected by direct eyeballing of the striped
patterns in the vicinity of channels for the simulated mor-
phologies. Because the simulations form a single (genus 5)
cubic unit cell of the gyroid, the number of distinct channels is
24; however, in some cases, the presence of defects does not
allow a reliable stripe number and the collars also pack very
densely onto the surface, so neighboring collars are very close, ef-
fectively making them difficult to separate. Counts were done on
well-defined collars.
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Fig. S1. Examples of RDFs from simulations. (A) Representative RDFs from various bead combinations yielding different structural parameters. (B) A–B RDFs
for x = 4 in box sizes ranging from 21 (Bottom) to 27.2 (Top). The RDFs are plotted normalized to the box size. (C) Variation of stripe width divided by box size
determined from RDFs as a function of box size. Individual simulations are marked with circles; the line is a guide for the eye.
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Fig. S2. Structural data from large-scale assembly. (A) Structure factor calculation from majority domains C (circle) and D (square) for an x = 4 simulation. The
lines indicate the predicted reflections from a structure with space group symmetry I4132. (B) Comparing membrane thickness from simulations (circles) and
theory (line), assuming the AB domain is a film of constant thickness following the gyroid minimal surface.

Fig. S3. Model structures derived from the ideal forest 53. (Left) Following the geodesics. (Right) Deforming the ribbons to near constant width in agreement
with the simulations.

Fig. S4. The pair of covering maps on the gyroid from a single hyperbolic pattern [here, a regular forest with edge length cosh−1(53)].
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Fig. S5. Overlay of both (gold) right- and (purple) left-handed patterns reticulating a unit cell of the gyroid resulting from mapping a dense, regular degree-
three 2223 forest with edge length cosh−1(53) from H2 in to the gyroid.
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Fig. S6. (A) A regular, dense degree-three forest (green edges) in the gyroid (from one covering map) together with its separating geodesics (black edges). (B)
The branched-ribbon tiling, whose edges are the (vertex-free) separating geodesics. (C) A single branched-ribbon tile together with its central spine that is
a single hcb graph.
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Fig. S7. Illustration of the G channels used to identify the simulation structures. (Left) A selection of six distinct channels in a gyroid unit cell. (Right) Example
of a channel belonging to the left-handed (mauve) labyrinth of the gyroid, decorated with alternating red and blue tree edges from the cosh−1(53) member of
the family of 2223 tilings. This pattern combines 10 edges winding around the mauve channel.

Fig. S8. (A) A branched ribbon of degree five and the associated streamlines, with a singular point of index −3
2 . (B) Ribbon dimensions in the vicinity of

a singular point of degree five. (C) The energy estimate as function of z.
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Table S1. Details of threaded multiple nets from regular, dense
hyperbolic forests mapped onto the gyroid (1–3)

Tree edge length No. nets† No. stripes (i)‡ No. stripes (ii)‡

cosh−1(3) 2 srs 2 4
cosh−1(5) 2 srs 2 6
cosh−1(15) 4* hcb§ 6 8
cosh−1(53) 54 srs 10 10
cosh−1(99) 54 srs 8 14
cosh−1(195) 2 srs 12 14
cosh−1(675) 54 srs 10 20
cosh−1(725) 54 srs 14 18

†The number of distinct nets.
‡The number of distinct tree edges winding around channels of type (i) or (ii).
§n* designates finitely many two-periodic layers with n orientations.
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Table S2. Stripe numbers for blue and red stripes lining
channels of the gyroid as a function of the composition x

x No. stripes

1.75 6, 6, 6, 6, 6, 8
2 6, 6, 6, 6, 8
2 6, 6, 8, 8, 8, 8
3.33 6, 6, 8, 8
3.67 8, 10, 10, 10, 10
4 6, 6, 6, 8, 8, 8, 8, 8, 10, 10, 10, 10
4 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10
4.67 8, 10, 10, 10, 10, 12
5 8, 10, 10, 10, 10, 12
6 10, 12, 12, 12, 12, 12
7 10, 12, 12, 12, 14, 14
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