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Small-angle X-ray scattering (SAXS) patterns are calculated from a three-

dimensional model of photosynthetic thylakoid membranes. The intricate

structure of the thylakoids is represented by sampling random ‘electron density

points’ on geometric surfaces. The simulation setup works as a virtual

instrument, allowing direct comparison with experimental data. The simulations

qualitatively reproduce experimental data and thus clarify the structural origin

of the scattering features. This is used to explain recent SAXS measurements

and as a guideline for new experiments and future quantitative modeling. The

setup has general applicability for model testing purposes when modeling

scattering from membrane systems of complex geometries.

1. Introduction

In green plants, the process of photosynthesis takes place in

small subcellular structures, named the chloroplasts. An

extensive membrane system is located inside the chloroplast,

known as the thylakoids. These membranes are crucial, as

most of the protein systems that participate in the various

stages of the photosynthetic processes are associated with this

membrane system. The thylakoids display a unique organi-

zation on mesoscales (10–1000 Å), as they arrange into stacks

of flattened vesicles termed grana stacks, interconnected by

membrane sheets known as stroma lamellae. A key functional

feature of this organization is to separate two aqueous

domains, the lumen (inner domain) and the stroma (outer

domain). This organization is illustrated two-dimensionally in

Fig. 1 by a thin-section electron microscopy image of a single

chloroplast. However, the precise three-dimensional organi-

zation is still a matter of debate (Shimoni et al., 2005; Mustardy

et al., 2008; Brumfeld et al., 2008; Garab & Mannella, 2008).

The dominant three-dimensional model is based on the

original work of Paolillo (1970) and describes the thylakoids

as one large intricately folded structure with the stroma

lamellae helically wound around the grana stacks (Mustardy &

Garab, 2003). An idealized illustration of this organization is

seen in Fig. 2. In the real biological system, the variability in

sizes and distances is large and should be superimposed on the

idealized model.

The stacked nature of the thylakoid system allows for a

structural characterization in terms of the repeat distances of

the grana and stroma lamellae domains, respectively, i.e. the

system can be constructed by repeatedly placing unit cells on

two lattices with respective lattice-point spacings corre-

sponding to the repeat distances of the two different types of

domains. A comparison of data reported in the literature

(Paolillo et al., 1969; Gunning & Steer, 1975; Brangeon &

Mustardy, 1979; Hodapp & Kreutz, 1980) reveals that the ratio

of stroma lamellae to grana repeat distance varies between 2

and 3.3, the typical grana repeat distance being 160–240 Å. A

possible distribution of distances within a grana unit cell as

estimated from small-angle scattering would be a membrane

thickness of �40 Å, a lumen width of �65 Å and an inter-

thylakoid distance of �20 Å, yielding a total of �165 Å (each

repeating unit cell contains two bilayers, see below). Inclina-

tion angles of the stroma lamellae between 12 and 26� and

grana diameters of on average 25 times the repeat distance are

found, corresponding to grana radii in the range

2000�3000 Å.

The overall purpose of our work is to determine the

behavior of these distances as the thylakoids perform dyna-

Figure 1
Electron microscopy image of a single chloroplast. We see the grana
stacks connected by stroma lamellae. Notice the tilted stroma lamellae
between the white arrows. Scale bar = 0.5 mm. Figure courtesy of A. L.
Staehelin and R. Hallick.
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mically, primarily during illumination but also upon changing

other parameters like salt content, osmolarity and tempera-

ture. A structural effect of illumination was first reported by

Murakami & Packer (1970) where it is shown that the thyla-

koid response to illumination is a contraction of the stack and

a decrease in membrane spacing. The shrinkage is reversed

when the membranes are subsequently permitted to rest in the

dark. It is also demonstrated that increasing the osmotic

pressure around the thylakoids leads to a contraction of the

stack, similar to the contraction caused by illumination. It is

further speculated that the stack radius and membrane

thickness might be changing. Both the illumination and the

osmotic pressure-induced shrinkage behavior is confirmed and

further quantified in our recent work using small-angle

neutron scattering (SANS) (Posselt et al., 2009); however,

mainly information on the overall stroma repeat distances was

obtained, and not on the detailed unit-cell structure. The unit-

cell behavior will be the focus of this paper.

The motivation for investigating the thylakoid system in

terms of the unit-cell structure has arisen from performing

identical experiments using small-angle X-ray scattering

(SAXS) at higher q (probing shorter distances) where the

situation turns out to be different: contrary to the SANS

results, illumination now causes almost no difference in the

scattering signal (not shown) while osmotic pressure variation

does. In Fig. 3 a series of measurements are shown where the

osmotic pressure on the membranes is changed by increasing

the concentration of sorbitol in the outer medium. The two

broad peaks are a characteristic scattering feature of the

thylakoids, with the 0.4 M sorbitol suspension medium

corresponding closest to the native state of the system. As can

be seen, the scattering signal is dramatically changed by the

osmolarity variation, and it is natural to assume that these

changes reflect both the structural changes in the system

(which we know take place as is well documented both in the

literature and from our SANS investigations) as well as the

changes in contrast. The question remains, however, why no

such changes are seen in the illumination SAXS experiments.

Here we will calculate the small-angle scattering from the

three-dimensional structure shown in Fig. 2 in order to

understand the structural origin of the scattering signal as it is

manifested in recent SAXS experiments conducted in our

laboratory. There are several reasons for this approach. Firstly,

we wish to understand the above-mentioned discrepancies,

and thus the present simulation setup is devised to elucidate

the role of contrast and the characteristic length scales of the

sample together with the range of length scales investigated in

the SAXS experiments. Secondly, the simulations allow us to

investigate a number of questions relevant for the formulation

of an analytical mathematical model, which can be fitted

directly to the experimental data to yield information on unit-

cell parameters, not only overall repeat distances as in the

SANS measurements. The formulation of such a quantitative

model based on the above considerations and validated by the

simulations will be presented elsewhere. Thirdly, the simula-

tions can indicate whether the hitherto utilized SAXS setup

suffers from any shortcomings in terms of actually retrieving

the information we are aiming for and can thus be used as a

guideline for future experiments. Lastly, the setup has general

applicability for model testing purposes, especially with regard

to membrane systems with complicated three-dimensional

geometries.

2. Simulations

The simulation setup is designed as a ‘virtual instrument’ and

basically consists of two steps. One is to model and represent

whatever structure one wishes to investigate (in this case
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Figure 3
Experimental SAXS data from isolated thylakoid membranes. The
legend indicates the sorbitol concentration of the surrounding medium.
Upon increasing the osmolarity the right peak stays fixed in position but
decreases in amplitude, while the left peak grows and shifts to lower q.

Figure 2
Three-dimensional model of the thylakoid membrane as suggested by
Paolillo. Important structural parameters are the repeat distances of both
the central grana stack and the surrounding helical stroma lamellae.
Notice that at each level of flattened vesicles there appear a number of
connection points around the stack, i.e. it is not a single sheet winding
around the stack. Figure courtesy of B. Gunning (http://www.
plantcellbiologyondvd.com).
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thylakoid membranes) as a discrete three-dimensional elec-

tron density distribution; the other is to calculate the scat-

tering from this structure and process it to compare with real

experiments. The simulation setup is thus designed to mimic a

particular experimental setup. In the present case, the SAXS

experiments are performed using a slit-collimated Kratky

camera; however, the specific simulation setup is easily

modified to represent any other scattering setup. Two pieces of

experimental information are especially relevant for the

present simulations: First, the slit collimation of the Kratky

camera introduces a smearing of the scattering signal, which

must be accounted for when comparing simulation results with

experiments (see Appendix A). Second, the thylakoids are

aligned in a magnetic field, which results in non-isotropic

scattering. The alignment increases the intensity on the Kratky

camera one-dimensional detector, and when using a two-

dimensional detector (as in our SANS measurements) the

changes in the characteristic scattering features can be

followed visually ‘online’ when all scattering intensity is

collected in two broad and intense spots.

2.1. Calculating the scattering

Historically, a number of approaches have been presented

to simulate small-angle scattering spectra, most of which focus

on orientationally averaged samples (Hansen, 1990; Schmidt-

Rohr, 2007) and a few on oriented samples (McAlister &

Grady, 1998; Förster et al., 2005). Owing to the magnetic

alignment of the thylakoids, we cannot take advantage of

various approaches that implicitly incorporate an orienta-

tional averaging (for example, the Debye equation), so instead

we take as our starting point the fundamental equation

AðqÞ ¼ PN
j¼1

bj expðiq � rjÞ ð1Þ

for calculating the scattering amplitude AðqÞ. Here q is the

scattering vector with magnitude q ¼ 4� sinð�Þ=�, where � is

the radiation wavelength and � is half the scattering angle,N is

the number of scattering objects, and bj and rj are the scat-

tering length and spatial position of the jth scattering object,

respectively. A ‘virtual detector’ is overlaid with a grid and the

scattering amplitude is calculated for each grid point, corre-

sponding to a particular q vector. The intensity is then

obtained directly from equation (1) as IðqÞ ¼ jAðqÞj2. The
resolution of the grid is chosen sufficiently high to ensure that

information is not lost (tested, not shown). In practice this

means 1000 partitions per centimetre detection length, which

corresponds to each grid point representing a 10 � 10 mm
pixel. The detection area also matches the Kratky camera

detector (6 � 1 cm) and is projected onto the measuring axis

of the detector. Finally, this one-dimensional scattering curve

is binned into channels containing six grid points to match the

Kratky camera channel width of �60 mm and smeared to

compare with experimental data as outlined in Appendix A.

Although the above approach is ‘brute force’ and rather time-

consuming, the calculations are still manageable on a standard

desktop computer (a couple of hours for a typical calculation

of one unit cell).

2.2. Modeling the structure

In a real system, the membranes building the thylakoid

structure consist of a mixture of lipids in which the various

photosynthetic proteins, pigments and protein complexes are

embedded. In the model, we average over the structure

laterally, thus neglecting any lateral organization with contrast

variation giving rise to small-angle scattering. For conve-

nience, the bilayer nomenclature with a hydrophiphilic ‘head

group’ and hydrophopic ‘tail group’ region is used throughout,

and the high protein content is thus only reflected in the

average contrast of the system, not in any lateral contrast

variation.

The virtual sample aims to represent the structure in Fig. 2,

and thus consists of two parts: an inner cylindrical stack of

double lipid bilayers surrounded by helical sheets of double

lipid bilayers (both with proteins embedded, see above). In the

calculations we ignore the actual connection points between

the two domains, but for convenience we refer to them below

in the model construction. The usual approach in data treat-

ment of stacked membrane systems is to model a one-

dimensional electron density profile along the direction

perpendicular to the membrane plane with densities taken

relative to the surrounding medium (Pabst et al., 2003). We

will also adopt this approach for both the grana stack and the

stroma lamellae along the direction of the membrane normal.

In Fig. 4 a detailed view of the distances and parameters

involved in this approach is shown (see caption for details; the

physical quantities described by the parameters are listed in

Table 1). The electron density profile in the perpendicular

direction is represented as a sum of six Gaussians (repre-

senting either hydrophilic or hydrophobic groups), while a

uniform lateral electron density is assumed as explained

above. Such a one-dimensional model can be analytically

Fourier transformed and we will compare the three-dimen-

sional simulations with this when relevant. This calculation is

outlined in Appendix B.

To build the actual structure shown in Fig. 2 we sample

points randomly from two different surfaces: a disc for the

grana stack and a helicoid for the stroma lamellae. These

‘electron density points’ will be assigned to either a hydro-

philic Gaussian or a hydrophobic Gaussian corresponding to

Fig. 4. All points in such a group will share the same electron

density value (�H or �C, respectively); however, the Gaussian

electron density distribution is ensured through the distribu-

tion of points along the normal to the grana and stroma

lamellae stack.

The grana stack is built from unit cells, each consisting of six

discs of points with four representing hydrophilic groups and

two representing hydrophobic groups, as exemplified in Fig. 5.

The points are distributed randomly: uniformly in the plane of

the discs and following a Gaussian distribution along the plane

normal corresponding to the parameters in Fig. 4. The various
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distances will thus be reflected in the relative positions of the

centers of gravity of the sampled points of each disc.

To construct the helical stroma domain, we will distribute

points on a helicoid wrapped around the center cylinder of the

grana stack. The helicoid is parametrized as

hðs; ’Þ ¼ ðs cos ’; s sin ’; �p’Þ; ð2Þ

where s and ’ are radial and angular azimuthal coordinates,

respectively, and �p is the pitch constant. The radial coordi-

nate is restricted to an interval [Rinner;Router], where Rinner is

the grana stack radius. As with the discs, the points are

uniformly distributed radially and Gaussian perpendicular to

the membrane surface.

Since the parametrization in equation (2) only produces one

helicoid sheet we generate a helicoid for each connection

point around the grana stack (see Fig. 2). This is easily

achieved by rotating M=m of the M randomly generated

points by an angle 2�j=m, where m is the number of connec-

tions and j ¼ 1; 2; . . . ;m. In Fig. 6 this is illustrated for eight

connection points, which will be our choice throughout this

investigation.

As with the grana stack, we want to make six sheets to

represent the ‘head’ groups and ‘tails’, respectively. This is

again achieved by making displacements perpendicular to the

surface; however, this direction is not constant on the helicoid.

To determine the perpendicular direction everywhere on the

helicoid we compute the standard unit normal vector, defined

as
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Table 1
Physical parameters derived from the model parameters (compare with
Fig. 4).

Derived parameter Grana stack Stroma lamellae

Membrane thickness zc � za þ �H zc � za þ �H
Inter-thylakoid distance 2za � �H Ds � 2zadd � 2zc � �H
Lumen distance Dg � 2zc � �H 2za þ 2zadd � �H
Repeat distance Dg Ds

Figure 4
Electron density profiles of the two unit cells. (a) Granum unit cell. (b)
Stroma lamellae unit cell. The direction of the z axis is along the normal
to the membrane plane. The physical quantities described by the
parameters are listed in Table 1. Note that the two unit cells are centered
differently. This choice reflects an underlying assumption about the
flexibility characteristics of the two stacks. This assumption is based on
biological evidence indicating that the grana stack inter-thylakoid
distance and the stroma lamellae lumen distance have the smallest
distance fluctuations (Holm, 2004). In a modeling context, this means that
the assumed larger distance fluctuations of the grana lumen and stroma
lamellae inter-thylakoid compartment will be described by the relative
positions of the unit cells, i.e. as a structure factor disorder.

Figure 5
Grana stack with four unit cells viewed in the xz plane (the xy plane
would show a uniform disc). Each triplet of discs represent a bilayer with
two head group regions surrounding a tail region. The repeat distance
is 200 Å, za ¼ 15 Å, zb ¼ 32:5 Å, zc ¼ 50 Å, �H ¼ �C ¼ 2 Å and the
radius is 2500 Å. From Table 1 this corresponds to a membrane thickness
of 37 Å, an inter-thylakoid distance of 28 Å and a lumen distance of 98 Å.
Note that the Gaussian distribution of points along the stack normal for
graphical reasons is represented by bands of black points separated by
white areas. If the spread of the Gaussians were larger, it would be
impossible to distinguish neighboring Gaussians.
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N ¼ hs � h’

khs � h’ k
; ð3Þ

where the subscript denotes partial differentiation with

respect to the coordinate given. We find that

N ¼ ð�2
p þ s2Þ�1=2ð��p sin ’; �p cos ’;�sÞ: ð4Þ

The displacements needed to build the helical structure and

the spread of the associated Gaussians will thus be made along

the direction of N. An example is illustrated in Fig. 7 for an

m ¼ 3 stroma lamellae unit cell.

Basically, this constitutes the sample generation procedure.

Again there is an issue of resolution related to how many

electron density points are needed to represent the structure

adequately. This is determined by simulation; when the scat-

tering curve normalized with respect to the number of electron

density points does not change upon adding more points, the

structure is assumed to be sufficiently well represented. The

point densities of the two domains are set to be equal to

ensure that the scattering signal is completely controlled by

the electron densities specified. The implementation of this

density constraint is outlined in Appendix C. Furthermore,

here we have only shown the two domains separately, but

since the scattering amplitude in equation (1) is additive, we

are free to simulate the two domains separately or combined.

This way we can clarify which part of the structure gives rise to

which features of the scattering and investigate the effect of

interference between the two domains, when calculating the

research papers

J. Appl. Cryst. (2009). 42, 649–659 J. J. K. Kirkensgaard et al. � Simulation of SAXS from thylakoids 653

Figure 7
Stroma unit cell, xz projection. Only anm = 3 connection point unit cell is
shown for visual clarity; all simulations are with m = 8. Parameters:
za þ zadd ¼ 40 Å, zc þ zadd ¼ 80 Å, zb centered between za and zc,
�H ¼ �C ¼ 2 Å, Rinner = 2500 Å and Router = 3000 Å. From Table 1 this
corresponds to a membrane thickness of 40 Å, an inter-thylakoid distance
of 140 Å and a lumen distance of 80 Å.

Figure 6
Generation of helical stroma lamellae sheets with eight connection
points. Repeat distance is fixed at 300 Å. The outer radius is artifically
small here for visualization purposes.

Figure 8
Comparing the analytical and simulated form factors of a one-
dimensional grana unit cell by simulating with a radius close to zero,
here 1 Å. The analytical electron density profiles are obtained by
summing the Fourier transform of six Gaussians with the relevant
parameters (see Appendix B). All simulated Gaussians contain 100
particles each. (a) Double bilayer unit cell with four Gaussians built from
electrons with scattering length +1, and two Gaussians with scattering
length �1. The histograms show the spatial sampling of points, which is
Gaussian. (b) Form factors corresponding to (a).
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scattering intensity as the absolute square of the amplitude.

We will utilize both options in the following.

3. Results and discussion

In this section we will first present simulation results from the

individual domains (grana and stroma lamellae, respectively)

and discuss these in relation to the analytical one-dimensional

profile model. We proceed to simulate the scattering from the

combined unit cell and discuss both the unsmeared and

smeared simulation data as well as some of the assumptions

made in the calculations. Finally we set up a realistic contrast

variation series to mimic the osmolarity measurements and

discuss the results in relation to the experimental data

presented previously in Fig. 3.

3.1. Grana unit cell

First we will investigate the changes in the scattering pattern

when going from one to three dimensions simply by looking at

the effect of increasing the radius of the grana in the simula-

tions. In Fig. 8 we see that the simulation of a single grana unit

cell with a radius close to zero (1 Å) is in good agreement with

the analytical form factor from the one-dimensional electron

density profile. It is not surprising that there is good corre-

spondence between the analytical model and the simulation

result when the simulation is for a virtual one-dimensional

grana unit cell. For the opposite limit of large grana stack radii

it is also a priori expected that the representation of scattering

from a thin disc by a one-dimensional profile multiplied by the

so-called Lorentz factor is valid when the lateral dimensions

are much larger than the thickness, as first derived by Porod

(Glatter & Kratky, 1982). In Fig. 9 we show the result of

increasing the radius, where the criterion of large lateral

dimensions is expected to be met for Rinner ¼ 2500 Å, and we

compare the simulation result with the ‘bare’ one-dimensional

model. As can be seen, as the radius is increased, the agree-

ment between the one-dimensional model and the simulated

scattering curve gets progressively worse.

We conclude that in order to take into account that the

large-radii simulations deviate substantially from the analy-

tical one-dimensional model two issues should be addressed;

first, the different scaling regimes of the scattering curve

should be considered, and second, the effect of the radius

should be explicitly included in the analytical model in three

dimensions. Such a detailed modeling of the effect of the

radius will not be considered further here since it does not

influence the conclusions based on the simulations. As it turns

out the main effect is in fact the first issue. If we limit the

discussion to a thin disc, it has been shown that with increasing

q the scaling of the orientationally averaged intensity for an

isotropic system goes through a series of exponents

(Shibayama et al., 1989), as

IðqÞ /
(
q0 if q< q�R;
q�2 if q�R < q< q�L;
q�4 if q�L < q:

ð5Þ

q�R and q�L are the scattering regime crossover positions

related to the characteristic distances of the system, here given

as approximately the inverse of the disc radius R and thickness

L, respectively. This behavior also applies for an oriented

system; however, the positions of the crossovers become

dependent on the degree of orientation (Shibayama et al.,

1989). In practice this dependence is described by new

‘effective’ distances, which in our case with a very high degree

of orientation and measuring along the cylinder axis means

that q�R 	 q�L ’ 1/100 Å = 0.01 Å�1, which is lower than the

experimental q range (here 100 Å is chosen as a representa-

tive lower bound of a double bilayer unit cell). In other words,

the scattering from the grana unit cell disc in the investigated q

range is all located in the q�4 (Porod) regime and so the one-

dimensional model should be scaled accordingly to be in

agreement with the three-dimensional simulations. This is

illustrated in Fig. 10 for the Rinner ¼ 2500 Å simulation from

Fig. 9 for three different membrane thicknesses. The overall

peak amplitudes are now in reasonable agreement, although

the simulation profiles experience some undulations and shifts

not seen in the one-dimensional model; we ascribe these

discrepancies to the radius effect mentioned above, which is

not accounted for. In general, the whole issue of the scaling

regimes is highly dependent on the combination of the

geometric dimensions and degree of orientation of the scat-

tering object and the q range in question [for example, for a

thin rod, the middle regime in equation (5) scales as q�1 and

the characteristic distances change order (Shibayama et al.,

1989)]. This will also be evident below, since these problems

are not an issue with the helical stroma lamellae domain where

the unit cell is a cylinder with a hole in the middle. Based on

the experimental numbers mentioned in the introduction we

will keep the radius of the grana domain constant at 2500 Å

from here on.
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Figure 9
Variation of the grana radius. As the radius is increased the scaling
crossovers move towards lower q progressively scaling the scattering
curves more and more [compare with equation (5)]. At radii up to
500 Å mainly the right peak is affected, but when reaching 1000 Å also
the second peak is altered, meaning that the regime crossover is now
moving through this peak. At a radius of 2500 Å the whole curve is in the
q�4 regime.
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3.2. Stroma lamellae unit cell

We now turn to simulating the stroma lamellae domain,

represented by helical sheets of double bilayers as explained

previously. As also stated we will limit the simulations to

m ¼ 8 sheets, and we will maintain the inner radius at

Rinner ¼ 2500 Å and set the outer radius of the sheets to twice

that value, i.e. Router ¼ 5000 Å. In reality the number of

connection points varies, so m ¼ 8 represents an average

number; however, changing m makes no difference in the

shape of the scattering signal (although the whole curve is

scaled since more points are used for higher m), except for a

minor symmetry-related difference between even and uneven

m (not shown). We will return to the effect of changing the

outer radius of the stroma lamellae below and show that

5000 Å is a reasonable choice. In Fig. 11 we see that the

simulations of the stroma lamellae are in excellent agreement

with the one-dimensional model scaled by q�1. This conclusion

is valid for all parameters varied in the investigation. The

result is what is expected from an oriented system when

including the standard Lorentz correction (Crist & Morosoff,

1973; Nagle & Tristram-Nagle, 2000). Normally when applying

a one-dimensional-profile model to an isotropic assembly of

stacked systems, one would employ the Lorentz correction

factor q�2 to account for the isotropically distributed intensity.

Upon orientation, this correction reduces to q�1. As already

mentioned above, the scaling behavior seen with the grana is

not seen with the stroma lamellae, which is most likely simply

a result of the differences in geometry, orientation and length

scales between the two domains. Another aspect of these

differences is seen in Fig. 12 where a simulated two-dimen-

sional detector image is shown, illustrating the effect of the

inclination angle due to the helical nature of the stroma

lamellae.

3.3. Complete thylakoid unit cell

In Fig. 13(a) we see a typical full simulation (one unit cell)

of the combined grana stack and stroma lamellae, together

with separate simulations of the individual domains and the

sum of these individual non-interfering contributions. Several

conclusions can be drawn from this result. First, it is evident

that the overall signal is dominated by the stroma lamellae, not

the central grana stack. This is obvious in light of the different

scaling properties discussed above but was not the initial

expectation. Second, we can see that simply adding the

contributions of the individual domains is a fairly good

approximation to the full interfering signal. This is very

important for modeling purposes, since this allows the two

domains to be modeled separately. Furthermore, this allows us

to draw conclusions directly from simulations of individual
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Figure 12
Two-dimensional detector image of the 40 Å membrane thickness sample
from Fig. 11. The inclination angle of the helical stroma lamellae gives rise
to a characteristic cross pattern (only half the detector is shown).

Figure 11
Comparing stroma lamellae three-dimensional simulations and the one-
dimensional profile model scaled by q�1, exemplified by changing the
stroma lamellae membrane thickness (indicated in the figure legend).
Simulated results with lumen distance = 80 Å, tails centered in membrane
and �H ¼ �C = 2 Å.

Figure 10
Scaling the one-dimensional model with q�4 ensures that the peak
amplitudes are in agreement with the three-dimensional simulations of
the 2500 Å radius grana stack from Fig. 9. The dashed red curves in the
two figures are the same. Full lines are q�4-scaled one-dimensional model
form factors and dashed lines are corresponding simulation results. The
scaling is illustrated here by changing the membrane thickness (changing
zc).
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domains without the need for performing the computationally

much heavier combined simulations.

Looking at Fig. 13(b) we see the same simulation results

smeared with the experimental resolution function. It is

evident that the simulation captures the main features of the

data as it very closely resembles the 2 M curve from Fig. 3.

One difference is the small peak around q ¼ 0:2 Å�1;

however, a small bump is in fact seen in several data sets (not

shown), although less pronounced, which we ascribe to an

averaging effect (the simulation is of one structure with well

defined parameters, which is of course not the case in the real

system). We also see that the domination of the stroma

lamellae signal is enhanced by the smearing effect.

The domination of the stroma lamellae signal is strongly

coupled to the ratio of simulated points between the grana

stack and the stroma lamellae, thus returning to the question

of which value to use for the outer radius of the stroma

lamellae. In Fig. 14 we see a number of simulations with a

fixed-radius central grana stack and an increasing stroma

lamellae radius. Fig. 14 shows that the choice of outer radius is

crucial for the final result. Comparing with the experimental

data it is clear that setting the outer radius too low does not

produce scattering profiles that are compatible with the

experimental data. This validates the choice of radius

employed here and in fact is a strong indication that the

modeling of this system requires the contribution from this

domain. As previously mentioned, the three-dimensional

stroma lamellae structure is excellently represented by the

one-dimensional model scaled properly. As a further

substantiation of this result the pure stroma lamellae radius

variation profiles are practically identical when normalized

with the number of simulated points (not shown). Thus, the

variation of the stroma lamellae outer radius corresponds to

scaling the contribution from this domain relative to the grana

stack contribution.

3.4. Realistic contrast variation series

In Fig. 15 (a) we see an indication of the range of relevant

electron densities in the thylakoid membrane. To produce

realistic contrast variation simulations we will make a simple

model based on these numbers, as well as on biological

knowledge of the differences between the protein content of

the grana stack and the stroma lamellae. It is well established

that the grana stack is more crowded with proteins than the

stroma lamellae (Kirchhoff et al., 2002). In the following we

will investigate a realistic system with a 70/30% protein/lipid

content in the grana stack and a 40/60% protein/lipid content

in the stroma lamellae and vary the electron density of the

surrounding medium, i.e. mimicking the changing of the

contrast when altering the osmolarity in the experiments. To

do this we set the head group electron density to 0.6, the tail

region to 0.32, proteins to 0.43 and the low/medium/high

osmolarity solution levels to 0.35/0.4/0.45, respectively. The
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Figure 13
Thylakoid simulation of one unit cell. (a) Unsmeared simulation results
of individual structures, sum of these structures and the full sample. (b)
As in (a), but profiles have been smeared with the Kratky camera
resolution function. Grana parameters: za ¼ 10 Å, zc ¼ 50 Å, zb ¼ zaþ
ðzc � zaÞ=2 (centered), Rinner ¼ 2500 Å, �H ¼ 1, �C ¼ �0:3 and �H ¼
�C ¼ 5 Å. Stroma lamellae parameters: za þ zadd ¼ 40 Å, zc þ zadd ¼
80 Å, zb centered, Router ¼ 5000 Å, �H ¼ 1, �C ¼ �0:5 and �H ¼ �C =
5 Å.

Figure 14
Simulating a full thylakoid unit cell while varying the outer radius of the
stroma lamellae and keeping the grana stack radius fixed. Comparing
with the experimental data shows that an outer radius of 4000–6000 Å is
necessary to capture the data. The simulation data are normalized to
q ¼ 0.

electronic reprint



last three numbers are rough calculations assuming 0.4, 1 and

4M sorbitol content in an aqueous phase with a water electron

density of 0.334 (using the mass densities and molar masses).

The resulting electron density profiles from such a model are

shown in Fig. 15(b). Notice that the different protein contents

in the two membrane domains lead to separate contrast

matching of the interior region in the two domains.

The results from these contrast simulations are shown in

Fig. 16. It is immediately clear that the simulations qualita-

tively reproduce the osmolarity measurements in terms of the

behavior of the two main peaks (compare with Fig. 3). Since

we have only simulated one unit cell throughout these inves-

tigations, the fact that the data are so well captured by the

simulations indicates that the signal is primarily form factor

scattering. In other words, the structural changes that we know

take place when increasing the osmolarity are only weakly

manifested in this q range. This most likely also can explain

why only very small changes are seen in the scattering upon

illumination, since in this case the structural changes are not

accompanied by huge contrast effects. We have performed

simulations with two or three unit cells stacked, which give rise

to distinct Bragg peaks in the simulated spectrum (not shown).

Such peaks are not observed in the experimental data (or only

occasionally as very weak shoulders in the scattering curve).

However, the ‘missing’ structure factor peaks in the experi-

mental data can also just be due to the presence of a high

degree of disorder in the biological sample. Such disorder is so

far not explicitly included in the simulations.

4. Conclusions and outlook

A straightforward simulation setup has been presented,

combining a brute-force calculation of the scattering ampli-

tude with a Monte Carlo generation of the samples to be

investigated. On the basis of this simulation, the scattering

curve from a three-dimensional model of thylakoid

membranes has been calculated. The simulations indicate that

in the investigated q range the observed SAXS scattering

curve is pure form factor scattering, and that contrast effects

caused by the addition of sorbitol to the media surrounding

the thylakoids play an important role in explaining the

significant osmotically induced changes seen in the SAXS

experiments. To obtain information on distances within the

unit cell, additional modeling is needed in order to clarify the

effect of the three-dimensional geometry of the system. It

might be possible to reliably extract both grana and stroma

lamellae unit-cell parameters if measuring on a setup with

point collimation, since the slit collimation smearing effect

contributes to enhancing the domination of the stroma

lamellae scattering.

In respect to the formulation of a fitting model four things

stand out as important lessons from the simulations. First, the
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Figure 15
(a) Experimental electron densities in units of e Å�3 (from Blaurock,
1982). Setting the head group electron density to 0.6, the tail region to
0.32, proteins to 0.43 and the low/medium/high osmolarity solution levels
to 0.35/0.4/0.45, respectively, leads to the contrast variation series shown
below when employing the model of 70/30–40/60% protein/lipid content
in the grana stack and stroma lamellae, respectively. (b) Contrast
variation series corresponding to the simulations in Fig. 16. The
osmolarity levels are indicated in the figures. Notice that the bilayer
interior electron density is actually higher than the surrounding medium
for low osmolarity owing to the protein content.

Figure 16
Full thylakoid unit-cell contrast simulation of the electron density profiles
shown in Fig. 15. The relative peak behavior is seen to closely resemble
the experimental data from Fig. 3. The data have been normalized to
coincide at the minimum around q ¼ 0:13.
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scattering can approximately be described as a sum of two

terms, one from the grana stack and one from the stroma

lamellae, ignoring the interference effect between the two

which is mainly important at low q (q < 0.03 Å�1). Second, an

important insight resulting from our simulations is the

different scaling behavior of the grana and stroma lamellae

contribution to the scattering, which should be considered in

the modeling. Third, it is shown to be possible to represent the

stroma lamellae domain by a one-dimensional Gaussian

electron density profile provided the correct geometrical

scaling factor is accounted for. Finally, the restricted lateral

dimensions of the system need to be considered explicitly

when modeling the scattering curves.

It should be emphasized that the thylakoid membrane

system investigated is a full biological system and as such is

subject to a large variability in the exact value of parameters

describing the system (number of layers in a grana stack, grana

and stroma dimensions etc.). In addition, we average over the

lateral electron density, i.e. the presence of protein complexes

is not explicitly taken into account. In spite of these complex

issues, our data show that important information can be

obtained from a scattering experiment averaging over the

sample and the qualitative simulation tool presented in this

work constitutes an important guide in interpreting the results.

More generally, the setup should be considered a strong

alternative as a model testing aid for systems with complicated

geometries, especially membranes or other systems with

varying electron density where one invokes dimension-redu-

cing assumptions in the data analysis.

APPENDIX A
Experimental details and numerical smearing

Thylakoid membranes were isolated from systematically

grown pea plants following the procedure outlined in detail by

Posselt et al. (2009). Basically, the outer chloroplast membrane

was removed by osmotic shock, and the native stroma solution

was replaced by a controlled environment surrounding the

thylakoids.

Measurements were made on a modified slit-collimated

Kratky camera allowing for online illumination of the sample.

The source radiation was delivered by a copper anode withK�
radiation at a wavelength of 1.54 Å, which was further filtered

by electronic energy discrimination of the detected photons.

The scattering was detected on a one-dimensional gas-filled

position-sensitive detector with a sample–detector distance of

26.7 cm. The covered q range in these investigations was 0.04–

0.3 Å�1. The scattering from the thylakoids was featureless for

q> 0:3 Å�1. The thylakoids were aligned in a 0.4 T magnetic

field supplied by a set of permanent magnets around the

sample. The cause of the alignment was a diamagnetic aniso-

tropy in some of the membrane-bound proteins (Heinen et al.,

2004). The total sum of these rather small individual magnetic

moments provides a total moment sufficient to align the

molecules along an axis perpendicular to the membrane plane.

For more details on slit-collimation see Kratky & Stabinger

(1984). In short, the incoming radiation is not point-like but

has the shape of a line. This means that a photon detected at a

specific position on the detector could have originated from

any place along the line-shaped beam. This introduces what is

known as a smearing effect, which has to be accounted for in

the data analysis (we ignore the minor smearing contributions

from the width and wavelength spread of the beam). Along

the one-dimensional detector axis (y axis) each detection

position corresponds to a range of q values given by

q ¼ ðx2 þ y2Þ1=2; ð6Þ
where x is the coordinate along the line-shaped beam. The

smeared intensity is given by

IsmearðyÞ ¼
R
Isim½ðx2 þ y2Þ1=2
PðxÞ dx; ð7Þ

where PðxÞ is the measured beam profile in the x direction. To

perform the smearing of the simulated scattering profiles this

equation is integrated numerically. Since there is not an exact

correspondence between the simulated and measured q values

we simply sample the simulated Isim corresponding to the qsim
value closest to the q value in the integral, which causes no

detectable difference in the result.

APPENDIX B
One-dimensional electron density profile

We will only calculate the one-dimensional profile for the

grana stack; that for the stroma lamellae is the same except

that the relevant parameters have to be changed according to

Fig. 4. The calculation follows the approach of Wiener et al.

(1989), ascribing to each unit cell an electron density profile

based on Gaussian approximations of the lipid head and tail

groups, respectively. Referring again to Fig. 4, the electron

density profile for the granum unit cell is

�GðzÞ ¼ �H exp � ðz� zaÞ2
2�2

H

� �
þ exp � ðzþ zaÞ2

2�2
H

� �� �

þ �C exp � ðz� zbÞ2
2�2

C

� �
þ exp � ðzþ zbÞ2

2�2
C

� �� �

þ �H exp � ðz� zcÞ2
2�2

H

� �
þ exp � ðzþ zcÞ2

2�2
H

� �� �
; ð8Þ

where �H and �C denote the average electron density ampli-

tude of the lipid head groups and the methyl groups of the

bilayer interior, both relative to the suspending medium, and

�H and �C the standard deviations of the Gaussians associated

therewith. As can be seen, the electron density profile is

symmetric around the center of the unit cell. From this center

za and zc denote the distances to the lipid head groups and zb
the distance to the minimum of the methyl group electron

density, which is not necessarily at the bilayer center. The

actual physical parameters derived from the model para-

meters are listed in Table 1. The evaluation of the model form

factor can be carried out analytically. Each form factor

receives contributions from three different Gaussians at three
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different distances from the center of the unit cell, each

counting twice as the cell is symmetric, i.e.

FðqÞ ¼ 2FaðqÞ þ 2FbðqÞ þ 2FcðqÞ: ð9Þ
For the granum unit cell

FbðqÞ ¼ ð2�Þ1=2�C�C expð��2
Cq

2=2Þ cosðqzbÞ ð10Þ
and

FiðqÞ ¼ ð2�Þ1=2�H�H expð��2
Hq

2=2Þ cosðqziÞ; ð11Þ
where i ¼ a; c. Again, similar expressions apply for the stroma

lamellae.

APPENDIX C
Density adjustment

The particle density per layer in the grana, �G, is the ratio of

the number of particles per layer, Nlayer, and the disc area, i.e.

�G ¼ Nlayer

�R2
inner

; ð12Þ

where Rinner is the grana radius. The stroma particle density �S

is the total stroma particle number Nstroma divided by the area

A of a one-pitch helicoid sheet, also taking into account the

number of connection points m and the total pitch number in

the stack. We find that

�S ¼
Nstroma

mANpitch

; ð13Þ

where Npitch is the number of pitches in the total height of the

stack. The area Asurface of a parametrized surface can be

calculated independently of the parametrization as

Asurface ¼
R R
�

ðEG� F2Þ1=2 ds d’; ð14Þ

where E, F, G are the coefficients of the first fundamental

form of the surface (Pressley, 2001). For a helicoid these are

given by

E ¼ 1; ð15Þ

F ¼ 0; ð16Þ

G ¼ s2 þ �2: ð17Þ
Inserting these parameters and performing the integral yields

A ¼ R2�
0

RRouter

Rinner

ðs2 þ �2Þ1=2 ds d’ ¼ 2�
RRouter

Rinner

ðs2 þ �2Þ1=2 ds

¼ 2�
�ðRouter=2ÞðR2

outer þ �2Þ1=2
þ ð�2=2Þ ln½Router þ ðR2

outer þ �2Þ1=2
�
� 2�

�ðRinner=2ÞðR2
inner þ �2Þ1=2

þ ð�2=2Þ ln½Rinner þ ðR2
inner þ �2Þ1=2
�: ð18Þ

Since �G=�S ¼ 1 we find that

Nstroma ¼
mANlayerNpitch

�R2
inner

: ð19Þ

This then determines the number of particles to simulate in

the stroma lamellae, given the dimensions of the system and

the number of particles per layer in the grana stack.
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