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A B S T R A C T

This study aims to utilise natural variation in pea seed composition from NordGen collections to identify key 
traits for optimized plant-based ingredients functionality while minimizing refined extraction processes. Given 
the impracticality of chemically analysing 1942 accessions, an algorithm-assisted approach was employed, using 
image-derived features and datasets to pre-select 51 accessions. Protein content, thousand kernel weight, 
perimeter, and G-value were determined as primary criteria via PCA, capturing variations in protein composition 
and other key components. Protein and starch content ranged from 21.2 to 36.9 % and 21.0–48.1 %, respectively. 
Image analysis linked geometry to composition, aiding pea selection and application. X-ray scattering differ-
entiates peas based on starch structure. Proteomic profiling revealed that legumin and vicilin varied most, with 
legumin dominant in smooth peas and vicilin in wrinkled ones, enabling control of their ratio through selection. 
This study highlights the potential of using natural variation of seed composition for less-refined plant-based 
ingredients for various applications.

1. Introduction

As global demand for plant-based foods continues to rise, peas have 
emerged as a valuable protein source due to their high yield and rela-
tively low environmental footprint (Saget et al., 2021). A major chal-
lenge in using pea ingredients for meat analogues and other plant-based 
applications is their complex composition of protein, starch, and fiber. 
This complexity, along with their undesirable sensory attributes, can 
result in poor food texture and reduced consumer acceptance (C. Sun 
et al., 2021). A common approach to overcoming these challenges is to 
use advanced fractionation technologies to separate key compounds, 
such as proteins and starch, from a small number of high-yielding pea 
cultivars (Kornet et al., 2022; Lie-Piang et al., 2025; Pelgrom et al., 

2013). The selected fractions are then used in food formulation. While 
this method improves functionality, it relies on a limited set of cultivars 
that restricts the diversity of sensory and functional traits needed for 
diverse plant-based applications, leaving much of the potential among 
non-commercial cultivars unexploited. As a result, many plant-based 
products require specific attributes that are often lacking in modern, 
highly refined cultivars. Besides, the sustainability of fractionation is 
also questionable since it usually requires significant energy and water 
inputs, raising concerns about its high environmental cost. These chal-
lenges underscore the need for alternative strategies that leverage ge-
netic diversity to enhance the functional properties of pea proteins while 
reducing reliance on resource-intensive processing methods.

The Nordic Genetic Resource Center – NordGen (WebSource: Plants – 
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NordGen) maintains a collection of over 2700 pea accessions, offering a 
rich source of genetic diversity. These accessions exhibit natural varia-
tions in key components such as carbohydrate and protein compositions, 
which play a crucial role in determining processing properties. For 
instance, mutations in the Rug3 gene result in starch-free peas, while 
mutations at the Rb loci and Vc-2 locus significantly reduce the levels of 
legumin and vicilin, respectively (B. Chen et al., 2024). This genetic 
diversity provides opportunities to identify accessions with superior 
functional and nutritional properties tailored to specific food applica-
tions. However, despite this diversity and the historical significance of 
pea as a genetic model, its genomics research has lagged behind other 
major legumes due to the large size and complexity of its genome 
(Pandey et al., 2021). As a result, systematic phenotypic characterisa-
tion provides a practical alternative to guide raw material selection and 
trait discovery for plant-based food development.

Previous studies have explored compositional and functional differ-
ences across selected accessions, for instance, comparative proteomic 
analyses across eight cultivars to reveal differences in protein compo-
sition and genetic variants, while functional and sensory profiling of 
isolates from twelve pea cultivars highlighted variability relevant to 
food applications (Arteaga et al., 2021; Vreeke et al., 2023). However, 
large-scale and integrative analyses remain underutilised. The lack of 
genotypic data (e.g., SNPs) for many accessions restricts the ability to 
link natural variation with underlying genetic factors, hindering the 
application of genome-informed selection strategies. Despite this po-
tential, the practical utilisation of genebank material presents several 
challenges. One major limitation is the small quantity of seeds available 
for each accession, which restricts the extent of destructive testing 
required for compositional and functional analysis. This constraint 
makes it difficult to assess large numbers of accessions comprehensively, 
limiting the ability to identify superior traits for food applications. 
Additionally, genebank collections often lack detailed processing- 
related data, necessitating resource-intensive screening methods to un-
cover functional properties relevant to modern plant-based foods.

Detailed compositional and functional analysis of genebank acces-
sions is crucial for identifying superior traits that can enhance plant- 
based food applications (Nguyen & Norton, 2020). Advanced 
methods, such as non-destructive imaging and high-throughput 
compositional assays, are essential for maximizing information from 
limited seed quantities. This approach can potentially be used to select 
seeds with large natural variation in the seed composition and accelerate 
the identification of accessions with specific composition and superior 
functional properties. Ultimately, effective characterisation and tar-
geted breeding can transform the use of peas in modern food systems, 
leading to next-generation cultivars tailored for plant-based 
applications.

To address these challenges, this study aims to apply a high- 
throughput image processing approach with algorithm-assisted clus-
tering models to predict and assess pea seed compositions. This 
approach enables the identification of a representative subset of acces-
sions capturing a wide range of compositional variations. These selected 
accessions can then be used to study the functional impact of individual 
compounds in greater detail. Overall, this data-driven strategy offers a 
rapid and cost-effective alternative to traditional wetlab analyses, 
facilitating the efficient screening of large pea germplasm collections for 
the development of functional plant-based food ingredients.

2. Materials and methods

2.1. Clustering-based selection of genebank accessions

A database containing 53 descriptors of 1942 genebank pea acces-
sions, along with images, was provided by NordGen. Detailed informa-
tion can be found on the Nordic Baltic Genebanks Information System 
(GenbIS, Search Accessions GRIN-Global). From this dataset, a highly 
diverse panel of pea accessions was selected for further analysis.

A subset of 51 accessions was selected from the NordGen pea 
collection based on four standardized variables: protein content, thou-
sand kernel weight (TKW), perimeter, and G-value. Protein content and 
TKW were extracted from the GenbIS, while perimeter and G-value were 
derived from image analysis (see Section 2.3). These variables were 
selected based on their high explanatory power in correlation and 
principal component analysis (PCA) (explained in Section 3.2). The 
Partitioning Around Medoids (PAM) clustering algorithm (k = 50) was 
applied to the dataset (n = 1448) to identify representative medoid 
samples across the diversity space. Extreme values were also retained to 
ensure edge coverage. A total of 51 accessions were included for further 
study after confirming seed availability. To ensure conservation, they 
were stored at − 18 ◦C in hermetically sealed aluminum bags with a 
moisture content below 7 %. The seeds were stored at − 18 ◦C in her-
metically sealed aluminum bags with a moisture content below 7 % to 
ensure conservation.

2.2. Raw materials

Whole pea seeds were milled into fine flour using a mixer mill MM 
400 (Retsch, Verder Scientific GmbH & Co. KG, Germany) equipped 
with two 10 mL agate grinding jars. For each batch of milling, two to 
three pea seeds (~2 mL) and two agate beads with a diameter of 10 mm 
were loaded into the jar and fixed on the vibration arm. The seeds were 
vibrated vigorously at a maximum frequency of 30 Hz (1800 min− 1) for 
2 min. Grinding was performed at room temperature. The resulting flour 
was sieved through a 0.25 mm mesh, and the grinding jars were rinsed 
with water between samples. The fine flour was collected into a 4 mL 
polypropylene bottle with a threaded screw cap and stored at − 20 ◦C 
before use.

2.3. Image processing for feature extraction

2.3.1. Mask generation using segment anything model
The images of peas used in this study were sourced from NordGen 

Plants and consist of high-quality visuals of various pea accessions 
captured under standardized conditions using a Tagarno video micro-
scope equipped with a 5.0× lens (Fig. 1. A). The photographs were taken 
against a uniform white background, with the camera positioned 
vertically, perpendicular to the ground, and at a fixed distance from the 
peas. All images in this study had the same resolution of 1920 × 1080 
pixels, with RGB channels. This setup ensured consistency across the 
dataset, making it suitable for accurate segmentation. Each image rep-
resents a pea accession, with a total of 2030 images corresponding to 
1942 accessions, as some accessions have multiple images.

The Segment Anything Model (SAM) was used for automatic mask 
generation (Fig. 1. B). SAM is a highly generalized image segmentation 
model developed by Meta AI (Kirillov et al., 2023). It was pre-trained 
using 1.1 billion high-quality segmentation masks derived from 11 
million diverse images to enable promptable segmentation tasks. SAM’s 
design was inspired by Natural Language Processing (NLP) models, 
where a foundation model is pre-trained to predict the next token and 
can be adapted to downstream tasks via zero-shot transfer. Similarly, 
SAM is assumed to possess a generalized understanding of objects, 
enabling it to effectively segment them from images (Mazurowski et al., 
2023). SAM consists of two encoders and one decoder. The model uses a 
Masked Autoencoder (MAE) (He et al., 2022) to generate the image 
embedding, along with a prompt encoder and a mask decoder to map all 
embeddings to corresponding segmentation masks. Additionally, 
beyond using direct prompts, SAM can generate masks automatically 
without prompts. It samples a large number of prompts across an image 
to generate masks for all objects present.

The images of peas contained a single object category. Masks were 
generated for all peas in the image after quality filtering, with each mask 
covering a single pea. The box IoU (Intersection over Union) cutoff was 
lowered to prevent small masks from overlapping with the primary 
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objects of interest, and a minimum mask size was set to exclude insig-
nificant masks. A total of 2030 images were input into the SAM to 
generate pea masks. Only masks fully contained within the image were 
included, excluding those whose bounding boxes extended beyond the 
image boundaries. This step ensured accurate computation of area- or 
shape-related features of the peas. Despite this adjustment, the 
remaining masks still captured the overall characteristics of each 
accession due to the high number of peas present in the images and their 
central positioning. Finally, a total of 286,862 masks were identified 
from 1942 accessions.

2.3.2. Features computation
For each mask, features including area, perimeter, major axis length, 

minor axis length, eccentricity, solidity, roundness, and RGB channel 
values were computed. Among them, area, perimeter, major and minor 
axis lengths are geometric features that describe the size of seeds. Ec-
centricity, solidity, and roundness are parameters used to describe the 
shape of seeds. The mean and standard deviation of these features were 
then calculated to represent the overall image features for each acces-
sion. All feature extraction steps were performed using scikit-image 
(v.0.19.2) (Van Der Walt et al., 2014). Automatic mask generation 
was performed using PyTorch (v.1.13.0) (Paszke et al., 2019), and the 
pipeline was implemented in Python (v.3.10.8).

Area: The number of pixels in the mask.
Perimeter: The total length of the line approximates the mask’s 

contour.
Major axis length: The length of the major axis of the mask, 

calculated by fitting an ellipse with the same normalized second central 
moments as the mask.

Minor axis length: The length of the minor axis of the mask.
Eccentricity: The ratio of the distance between focal points to the 

major axis length ranges between 0 and 1. This ratio equals 0 for a 
perfect circle; otherwise, the shape resembles an ellipse. 

Eccentricity = Distance between focal points/Major axis length 

Solidity: The ratio of the mask’s area to the area of its convex hull. 
Solidity equals 1 when the shape has no indentations. 

Solidity = Maskʹs area/Convex hull area 

Roundness: The degree of similarity between the mask’s shape and 
that of a mathematically perfect circle. Roundness equals 1 for a perfect 
circle and decreases as the shape becomes more polygonal. 

Roundness = 4π × Area/Perimeter2 

RGB values: The median and standard deviation of pixel values in 
the red, green, and blue channels within the mask.

2.4. Selection of representative accessions

The dataset of 1448 accessions was clustered into 50 groups using 
the Partitioning Around Medoids (PAM) algorithm to select a repre-
sentative subset of pea accessions for further analysis. Four key variables 
(protein content, KTW, perimeter, and G-value) were normalized, and 
clustering was performed with k = 50. The medoid sample of each 
cluster was chosen as a representative. To ensure comprehensive trait 
coverage, accessions with extreme protein content values (i.e., 
maximum and minimum) were included if not already represented. 
After confirming seed availability with NordGen, a total of 51 accessions 
were selected. The panel consisted of 51 accessions of Pisum sativum L., 
and one Pisum abyssinicum A. Braun accession. Among these, 20 acces-
sions originated from Sweden, 7 from Russia, 4 each from Germany and 
Bulgaria. Two accessions were from the Netherlands, and one each from 
Denmark, Finland, Czechia, Ethiopia, Afghanistan, and Bhutan. The 
origins of the remaining 8 cultivars were undocumented.

2.5. Compositional analysis

2.5.1. Protein content
Approximately 20 mg of pea flour was weighed onto a 35 × 35 mm 

tin foil (Elementar Analysensysteme GmbH, Langenselbold, Germany) 
using an analytical balance (AG 135, METTLER TOLEDO, Switzerland). 
The tin foil was then folded into a capsule and loaded into the auto-
sampler. The protein content was determined by the Dumas combustion 
method with an organic elemental analyser (vario MACRO cube, Ele-
mentar Analysensysteme GmbH, Germany). The operational parameters 
were as follows: combustion tube temperature, 960 ◦C; reduction tube 
temperature, 830 ◦C; pressure, 1230 mbar; helium flow rate, 600 mL/ 
min; MFC-TCD, 600 mL/min. A nitrogen conversion factor of 5.4 was 
used to calculate crude protein content (Vreeke et al., 2023). The 
measurements were performed in duplicate, and results are reported on 
a dry weight basis.

2.5.2. Total starch
The starch content of all samples was determined using the Mega-

zyme Total Starch Assay Kit (Wicklow, Ireland), following the manu-
facturer’s instructions.

2.5.3. Amylose/amylopectin ratio
The ratio of amylose to amylopectin in pea flour was determined 

using the commercial Megazyme Amylose/Amylopectin Assay Kit with 
some modifications. Specifically, 25 mg of pea flour was mixed with 0.5 
mL of 80 % (v/v) ethanol in a 15 mL Falcon tube and vortexed thor-
oughly. Then, 6 mL of 96 % (v/v) ethanol was added, and the mixture 
was allowed to stand for 15 min. The tube was centrifuged at 5000 ×g 
for 5 min, and the supernatant was discarded. The pellet was drained on 
tissue for 15 min. Subsequently, 0.1 mL of 80 % ethanol was added, and 

Fig. 1. Schematic diagram of using SAM to process pea images. A: original pea image, B: processed pea image, each single-coloured enclosed shape is referred to as 
a mask.
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the sample was vortexed to disperse the pellet. Afterward, 1 mL of cold 
1.7 M sodium hydroxide was added, and the mixture was vortexed for 
15 s. The tubes were then placed on ice for 15 min. Next, 4 mL of 0.6 M 
sodium acetate buffer (pH 3.8) containing 5 mM calcium chloride was 
added. The total volume was brought to 25 mL before proceeding with 
the subsequent steps as described in the kit protocol. The amylose 
content was expressed as a percentage on a dry starch basis.

2.6. Wide-angle X-ray scattering (WAXS)

Pea seeds were dehulled and milled into fine flour using a mixer mill. 
The samples were sealed in a 0.5 mm thick mica cell and scanned from 
2θ = 5◦ to 40◦ using a Nano-inXider instrument (Xenocs, Grenoble, 
France). X-rays were generated from a Cu Kα source at settings of 40 mA 
current and 40 kV voltage, with a wavelength of 1.54 Å. Scattering from 
an empty sample cell was subtracted as background. Each sample was 
measured three times at different positions, and the average spectrum 
was used for analysis. The q range of 0.41–4.20 Å− 1 (where q = 4ℼsin 
θ/λ) was utilised. Crystallinity (%) was calculated as the ratio between 
the area of the crystalline peaks and the amorphous baseline using 
MATLAB (version 2022a, The MathWorks, Inc., Massachusetts, USA). 
The baseline was estimated using a robust smoothing algorithm pro-
posed by Brückner (2000).

2.7. Subunit composition of pea flour analysed by LC-MS/MS

2.7.1. In-solution trypsin digestion
Pea flour (50 mg) was solubilized in 5 mL of 100 mM Tris-HCl buffer 

(pH 8.0, containing 8 M urea) and thoroughly mixed overnight at room 
temperature on a rotator (MX-RL-E, DLAB Scientific Co., Ltd., Beijing, 
China). The protein concentration of the solution was adjusted to 1.0 
mg/mL using 100 mM Tris-HCl buffer. In-solution trypsin digestion was 
performed following the method described by Zhang et al. (2024) with 
minor modifications. A 20 μL aliquot of the protein solution was trans-
ferred to a 1.5 mL Eppendorf tube, followed by the addition of 4 μL of 
450 mM dithiothreitol (DTT). The mixture was incubated at room 
temperature for 45 min to reduce disulphide bonds. Subsequently, 8 μL 
of freshly prepared 500 mM iodoacetamide (in 100 mM NH4HCO3) was 
added to alkylated native and reduced cysteine residues, and the sample 
was incubated in the dark for 1 h at room temperature. Then, 158 μL of 
10 mM NH4HCO3 was added to adjust the protein concentration to 0.1 
μg/μL. Proteolysis was initiated by adding 10 μL of 0.125 μg/μL trypsin 
(from bovine pancreas, activity ≥10,000 BAEE, Sigma-Aldrich) and 
incubating the mixture overnight at 37 ◦C. The hydrolysis was termi-
nated by adding 4 μL of 10 % (v/v) trifluoroacetic acid, giving a pH of 
2.0–2.5. The digested sample was centrifuged at 20,000 ×g for 20 min, 
and the supernatant was filtered through a 0.2 μm regenerated cellulose 
(RC) membrane filter. An aliquot of 50 μL of the filtrate was transferred 
to a 96-well PCR plate and stored at − 20 ◦C prior to LC-MS analysis.

2.7.2. LC-MS/MS
The tryptic peptides were analysed using an Orbitrap Exploris 480 

mass spectrometer coupled with a Vanquish UHPLC system (Thermo 
Fisher, Roskilde, Denmark). The peptides were separated by a bioZen™ 
Peptide XB-C18 column (1.7 μm particle size, 150 × 2.1 mm, Phenom-
enex, Værløse, Denmark) and eluted in 40 min using a linear gradient of 
solvent A (0.1 % formic acid) and solvent B (0.1 % formic acid/80 % 
acetonitrile). The mass spectrophotometer was operated in full MS scan 
mode under positive ionization with a resolution of 60,000, a normal-
ized automatic gain control (AGC) target of 300 %, and a mass scan 
range of 200–2000 m/z. The top 10 most intensive spectra were sub-
jected to MS/MS at an Orbitrap resolution of 30,000, a 30 % collision 
energy of higher-energy collisional dissociation (HCD), a normalized 
AGC target of 100 %, an isolation window of 2.0 m/z, and a maximum 
injection time of 200 ms.

The data was analysed using Proteome Discoverer (version 2.5) with 

the Sequest HT searching algorithm against the pea proteome database 
at Uniprot (https://www.uniprot.org/taxonomy/3888). The parameters 
for database searching were set as follows: trypsin as the used enzyme, 
peptide length of 5–50, maximum missed cleavage of 2, precursor mass 
tolerance of 10 ppm, and fragment mass tolerance of 0.05 Da. The 
oxidation of methionine (+15.996 Da) was set as the dynamic modifi-
cation, and the static modification was cysteine carbamidomethylation 
(+57.021 Da). To simplify the output, the protein database was reduced 
based on the results of an initial search using the complete database 
containing 64,000 sequences. To reduce the complexity of protein 
identification resulting from the poor annotation of the pea protein 
database, the top 350 protein hits were aligned, and sequences with 
>98 % similarity were clustered, retaining 145 (in the Appendix) unique 
sequences with the highest annotation levels. To assess the confidence of 
peptide-spectrum matches (PSMs), Percolator was applied to calculate 
the q-value and probability factor for the identified peptide-spectrum 
match.

2.8. Ζ-potential

Pea flour (0.4 g) was dispersed in 0.3 M NaCl at a 1:50 (w/v) ratio 
and stirred overnight at room temperature using a roller mixer (Buch & 
Holm A/S, Denmark). The suspension was centrifuged (Sigma 3 K15, 
Sigma Laborzentrifugen Gmbh, Ostrode, Germany) at 8000 rpm for 20 
min at 10 ◦C. The supernatant was collected, and protein concentration 
was estimated with a Nanodrop ND-1000 spectrophotometer (Thermo 
Scientific, USA) using absorbance at 280 nm. Zeta potential was deter-
mined with Zetasizer Nano ZSP (Malvern Panalytical Ltd., Malvern, UK) 
at 25 ◦C. Sample solutions were diluted with 0.3 M NaCl to acquire a 
final protein concentration of 2 mg/mL. The pH was adjusted using 0.1 
M HCl and 0.1 M NaOH. Zeta potentials were read at increments of 1.0 
between pH 3 and 7 with a pH tolerance of 0.1. Each measurement was 
repeated three times. The isoelectric point (pl) was calculated using the 
linear interpolation method.

2.9. Statistical analysis

All experiments were independently repeated twice. Results are 
expressed as mean values ± standard deviations. Statistical differences 
were analysed using one-way ANOVA with a t-test at a significant level 
of 0.05. Data analyses were conducted using R (version 4.3.2). Pearson’s 
correlation tests were executed with the ‘stats’ package. To capture 
compositional diversity among accessions, the partitioning around 
medoids (PAM) clustering algorithm was implemented using the ‘clus-
ter’ package in R, based on key macronutrient contents including pro-
tein and starch.

3. Results and discussion

3.1. Morphological characterisation through image analysis

The morphology of pea seeds, such as shape, size, and colour, is 
influenced by genetic and environmental factors, and serves as an in-
dicator of composition and seed functionality during cooking (Dueholm 
et al., 2024; Santos et al., 2019). Recent genomic studies have demon-
strated the value of integrating phenotypic and genotypic data to map 
key agronomic traits. For instance, Yang et al. (2022) used resequencing 
data from 118 pea accessions to re-identify Mendel’s genetic loci con-
trolling seed shape, showing strong concordance between phenotypic 
variation and population structure based on genome-wide SNP and 
structural variation analyses. Therefore, understanding the morpho-
logical traits of pea accessions can be used to map their compositions 
and functional properties. As shown in Fig. 2, significant morphological 
variation was observed among the 1942 accessions, which is attributed 
to differences in genetic specificity and the environmental growing 
conditions (S. K. Chen et al., 2023). Notably, accessions labelled as 
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“landrace” showed greater phenotypic variability in area, perimeter, 
and RG values compared to “cultivar” accessions, as indicated by their 
higher standard deviation (data not shown). This phenotypic diversity 
suggests a broader genetic base in landrace accessions, which may 
contribute to variation in nutritional compositions.

To efficiently quantify morphological diversity among the pea ac-
cessions, the Segment Anything Model (SAM) was used to automatically 
generate segmentation masks from standardized images, enabling pre-
cise extraction of size, shape, and colour features. Each mask was 
defined as a single-coloured enclosed shape covering one seed (Fig. 1. 
B). In Fig. 2. A, the number of masks indicates the number of pea seeds in 
an image identified by the algorithm. Generally, fewer masks per image 
indicate larger seed sizes. Most pea accessions produced medium-sized 
kernels, with a few exhibited very small or large ones. The size of pea 
seeds (area, perimeter, major, and minor length) followed a normal 
distribution. Eccentricity values were concentrated around 0.5, indi-
cating a pronounced ratio of the focal distance to the major length. This 
suggests that the seeds are slightly elongated ellipses rather than 
perfectly spherical. The solidity was computed to quantify the convex 
area of the cross-section, under the assumption that values closer to 1 
indicate fewer dents and a less wrinkled surface, and vice versa. This is 
relevant since previous studies have demonstrated significant differ-
ences in the nutritional composition, especially the amylose-to- 
amylopectin ratio, between smooth and wrinkled peas (Sun et al., 
2023). High roundness means that the relationship between the area and 
perimeter of the mask is close to that of a circle.

The colour of pea coats can be homogeneous, variegated, or 
speckled. The RGB values from different pea accessions showed distinct 
distribution patterns, reflecting the pigmentation variations in pea coats 
(Fig. 2, I–K). The R-value displayed a unimodal distribution with 
relatively uniform frequencies, indicating that most pea seed coats 
contain a certain degree of red hue. In contrast, the G and B values 
exhibited bimodal distributions, suggesting two distinct groups in terms 

of green and blue intensity. At lower R values, both G and B values were 
relatively low, corresponding to darker hues such as brownish or reddish 
tones. These darker colours likely indicate a high accumulation of 
phenolic compounds (Quilichini et al., 2022). Conversely, higher R, G, 
and B values were associated with lighter seed coats, including yellow 
and greenish hues, typically low in proanthocyanidins. This analysis 
highlights the presence of not only commonly studied yellow and green 
peas, but also a significant proportion of dark-coloured accessions, such 
as brown and black peas, which have been relatively understudied 
(Sharma & Gupta, 2023). The second peak observed in the bimodal 
distributions of G and B values corresponds to these darker pea acces-
sions (Fig. 2, J-K). Similar RGB distribution patterns and relationships 
between RGB values and seed coat colour intensity have been reported 
in other legumes, where lower RGB values corresponded to darker col-
ours and higher values to lighter ones (Lay et al., 2024), supporting the 
robustness of this digital phenotyping approach.

It is hypothesised that the morphological differences observed 
among pea accessions are linked to their starch and protein content and 
composition. Therefore, these morphological traits provide a valuable 
basis for the strategic selection of genotypes aimed at enhancing specific 
functional and nutritional qualities. To effectively utilise these 
morphological traits in breeding programs, accurate and high- 
throughput phenotyping methods are required. Recent advances in 
image processing and machine learning offer powerful tools for quan-
tifying these traits with high precision.

3.2. Establishment of selection criteria

The dataset provided by NordGen includes complete records of 
thousand kernel weight (TKW) and protein content for 1448 accessions 
out of the 1942 accessions, as only these accessions have both traits fully 
documented. To identify the most relevant selection criteria, correlation 
and principal component analysis (PCA) were conducted using protein 

Fig. 2. Distribution histogram of the number of masks (A), geometric features (B–H), and colour information (I-J) extracted from 1942 pea accessions. Only mean 
values are shown.
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content, TKW, and image features. The correlation coefficients are 
shown in Fig. 3. A. Strong correlations were observed among size-related 
variables (perimeter, major and minor length) and colour parameters 
(RGB values), potentially leading to multicollinearity issues. Therefore, 
it is necessary to reduce the number of variables used as selection 
criteria to ensure more robust and reliable results.

It has been found that TKW showed a Pearson correlation of 
0.68–0.70 with seed size (perimeter, area, major and minor length), 
which is expected since larger seeds generally accumulate more dry 
matter. This accumulation contributes to higher yield, a critical 
parameter in modern agriculture. In contrast, TKW and protein content 
exhibit a modest negative correlation (coefficient of − 0.15), suggesting 
a trade-off between carbohydrate accumulation and protein content. 
This phenomenon is well-documented in legumes, where increased 
carbohydrate deposition often occurs at the expense of protein con-
centration due to competition for carbon and nitrogen resources during 
seed development (Golombek et al., 2001; Morin et al., 2022). There-
fore, TKW could serve as a valuable criterion for selecting pea acces-
sions, particularly when targeting specific compositional traits such as 
carbohydrate content. PCA was further performed to evaluate the re-
lationships among all variables. In Fig. 3. B, each arrow represents a 
variable, its direction and length show the relationship between vari-
ables and their principal components. The contribution of a variable is 
represented by a colour gradient, with red indicating the largest 
contribution and blue indicating the lowest contribution. Dim1 (42.3 %) 
predominantly captures size-related variation, especially perimeter, 
areas, major and minor axis length, while Dim2 (25.6 %) captures seed 
shape and colour parameters such as roundness, eccentricity, and RGB 
values. The angles between the arrows represent correlation strength. 
For instance, the acute angle between TKW and perimeter confirmed 
their high positive coefficient, consistent with the results in Fig. 3. A. 
Protein content is located near the coordinate origin of the principal 
components 1 and 2, indicating a weak correlation with morphology. 
Nevertheless, it remains a crucial selection criterion due to its nutri-
tional significance. Interestingly, RGB values show minimal correlation 
with seed size and TKW, as reflected by nearly orthogonal vectors. While 
a previous study on 16 pea cultivars found that cultivars with yellow 
seeds had higher weight and larger diameter compared to those with 
green seeds (Guindon et al., 2021). This trend was not observed across 
the larger and more diverse set of 1448 accessions in this study. Despite 
their weak correlation with geometric traits or protein content, pea coat 
colour remains important due to its association with nutritional and 
functional components like phenols and flavonoids (Zhong et al., 2018). 

Based on this analysis, four variables, i.e., protein content, TKW, 
perimeter, and G-value were selected as key selection criteria for 
downstream analysis of the NordGencollection. These traits capture 
essential aspects of compositional and functional diversity relevant to 
pea protein utilisation.

3.3. Summary of representative accessions

The pea seeds from 51 accessions selected from NordGen are listed in 
Table 1. They varied in quantity, with total seeds weight per accession 
ranging from 0.9 g to 10.9 g. The diversity of traits among the selected 
samples was visually validated (Fig. 4). While the NordGen dataset 
comprises 1942 pea accessions, complete records for both thousand 
kernel weight (TKW) and protein content are only available for 1448 
accessions due to missing values. The PCA plot illustrates the distribu-
tion of the selected samples (black dots) relative to the entire dataset 
(green dots). PC1 accounts for 45.4 % of the total variance and is pri-
marily driven by KTW and perimeter, while PC2 accounts for 28.1 % of 
the variance and is mainly influenced by protein content. The selected 
samples are evenly distributed across the principal component space, 
confirming a comprehensive representation of the diversity spectrum 
present in the full dataset. The album of the 51 selected pea accessions 
further highlights the range of phenotypic diversity, particularly in seed 
coat colour, underscoring the effectiveness of the selection process in 
capturing visually observable variation.

The distribution histograms of the 51 selected pea accessions across 
the four criteria are shown in Fig. 5. Overall, the perimeter and G-value 
distributions show similar peak shapes to those in Fig. 2 E and Fig. 2 J, 
respectively. Although the shoulders appear smoother, indicating a less 
pronounced central tendency. Both protein content and TKW display 
normal distributions, effectively capturing both high and low extremes. 
These results demonstrate that the algorithm-assisted sampling strategy 
successfully provides robust representativeness for the key variables. 
Further investigation of outliers observed in the histograms was con-
ducted to validate their classification. This included verification of their 
morphological features and taxonomic identity to confirm they belong 
to Pisum sativum. However, further genetic analysis may be required to 
rule out the possibility of hybridisation or mislabelling.

3.4. Chemical compositions and correlation with image features

Table 1 summarises the main compositions of the 51 accessions, the 
isoelectric point, and their taxonomy information. Notably, the wrinkle/ 

Fig. 3. (A) Correlation heatmap showing the relationships between thousand kernel weight, documented protein content, and 13 image features of 1448 pea ac-
cessions. (B) PCA analysis illustrates these variables’ contributions to the first two principal components (Dim1 and Dim2).
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smooth phenotype classification presented in the table was determined 
based on visual inspection. The protein content among accessions 
ranged from 17.1 to 29.6 % and the starch content from 21.0 to 48.1 %, 
covering a broader range than the commonly reported 20–25 % for peas 
(Shen et al., 2022). Compared to earlier reports, the present study 

analysed a more extensive and diverse set of accessions, allowing a 
broader assessment of compositional variation.

Amylose content varied considerably among accessions (15.5–69.4 
%), influenced by both genetic and environmental factors. Variations in 
starch-branching enzyme I (SBEI) activity contribute to differences in 

Table 1 
Overview of the 51 selected pea accessions and their compositions. Values are expressed as mean ± standard deviation based on duplicate measurements.

NordGen ID Taxonomy Name
Wrinkle/ 
Smooth

Protein content 
(%, on dry 
basis)

Starch content 
(%, on dry 
basis)

Amylose content 
(%, on dry starch 
basis)

Other 
components 
(%)

Isoelectric 
point

NGB103559 Pisum abyssinicum A. 
Braun

WBH 3559 S 24.9 ± 0.5 41.8 ± 0.2 27.5 ± 3.1 33.3 ± 0.7 4.3

NGB103067 Pisum sativum L. WBH 3067 S 17.1 ± 0.1 43.6 ± 0.2 30.3 ± 0.8 39.3 ± 0.3 4.0
NGB103619 Pisum sativum L. Braychangma S 18.4 ± 0.1 44.2 ± 0.5 35.3 ± 1.7 37.4 ± 0.6 3.9
NGB102987 Pisum sativum L. WBH 2987 S 20.6 ± 0.5 41.1 ± 0.0 36.3 ± 4.0 38.3 ± 0.5 4.6
NGB103724 Pisum sativum L. WBH 3724 S 20.9 ± 0.8 36.6 ± 1.3 28.8 ± 1.4 42.5 ± 2.1 4.1
NGB103579 Pisum sativum L. WBH 3579 S 21.2 ± 0.2 42.3 ± 1.3 15.5 ± 1.9 36.5 ± 1.5 4.3
NGB103852 Pisum sativum L. Jo 1068 S 21.3 ± 0.2 45.3 ± 0.7 31.2 ± 1.0 33.4 ± 0.9 4.6
NGB105881 Pisum sativum L. Chlorotica S 21.4 ± 0.2 44.7 ± 0.1 29.3 ± 1.7 33.9 ± 0.3 4.0
NGB106020 Pisum sativum L. Medicagoides S 22.5 ± 0.9 42.7 ± 0.7 27.7 ± 2.8 34.8 ± 1.6 4.4
NGB106104 Pisum sativum L. Calyx carpellaris S 22.5 ± 0.2 42.7 ± 0.8 43.6 ± 0.0 34.8 ± 1.0 4.1
NGB103607 Pisum sativum L. WBH 3607 W 22.6 ± 0.1 33.3 ± 0.1 36.4 ± 4.7 44.1 ± 0.2 3.9
NGB103758 Pisum sativum L. WBH 3758 W 22.7 ± 0.1 29.6 ± 0.3 36.7 ± 2.1 47.7 ± 0.4 3.8
NGB101228 Pisum sativum L. WBH 1228 W 22.7 ± 0.1 43.0 ± 2.5 44.3 ± 0.7 34.3 ± 2.6 4.0
NGB105898 Pisum sativum L. Chlorotica S 22.8 ± 0.1 46.0 ± 2.0 28.0 ± 0.3 31.2 ± 2.1 3.9
NGB102153 Pisum sativum L. Falensky-42 S 22.9 ± 0.0 43.2 ± 0.5 30.6 ± 4.7 33.9 ± 0.5 4.4
NGB101776 Pisum sativum L. WBH 1776 S 23.0 ± 0.8 38.8 ± 0.3 29.0 ± 0.8 38.2 ± 1.1 4.2
NGB103624 Pisum sativum L. WBH 3624 W 23.1 ± 0.2 21.0 ± 1.1 48.1 ± 2.6 55.9 ± 1.3 4.3
NGB103729 Pisum sativum L. WBH 3729 S 23.2 ± 0.4 36.6 ± 0.7 27.2 ± 4.1 40.2 ± 1.1 4.2
NGB102115 Pisum sativum L. Cobri S 23.2 ± 0.5 42.0 ± 0.9 27.8 ± 2.5 34.8 ± 1.4 3.9
NGB106021 Pisum sativum L. Medicagoides S 23.4 ± 0.0 41.6 ± 0.1 25.6 ± 1.0 35.0 ± 0.1 4.6
NGB103036 Pisum sativum L. WBH 3036 S 23.4 ± 0.2 41.4 ± 0.9 28.5 ± 1.6 35.2 ± 1.1 4.2
NGB101519 Pisum sativum L. WBH 1519 S 23.7 ± 1.0 38.9 ± 1.4 35.7 ± 0.3 37.4 ± 2.4 3.8
NGB106138 Pisum sativum L. WBH 6138 S 23.8 ± 0.2 43.1 ± 0.3 29.2 ± 0.3 33.1 ± 0.5 4.2
NGB105895 Pisum sativum L. Subtus-incerata S 24.2 ± 0.2 40.5 ± 0.9 25.5 ± 4.4 35.3 ± 1.1 3.9
NGB103751 Pisum sativum L. WBH 3751 S 24.4 ± 0.2 35.1 ± 1.2 32.5 ± 2.7 40.5 ± 1.4 3.9
NGB103621 Pisum sativum L. WBH 3621 S 24.7 ± 0.6 41.9 ± 0.2 23.9 ± 0.4 33.4 ± 0.8 4.0
NGB101515 Pisum sativum L. WBH 1515 W 24.8 ± 0.4 28.3 ± 0.7 64.3 ± 0.7 46.9 ± 1.1 3.8
NGB105931 Pisum sativum L. Supra-incerata S 24.8 ± 0.5 42.9 ± 0.3 21.3 ± 1.3 32.3 ± 0.8 4.0
NGB101535 Pisum sativum L. WBH 1535 S 24.9 ± 0.1 37.5 ± 0.4 35.0 ± 1.2 37.6 ± 0.5 4.2
NGB101496 Pisum sativum L. WBH 1496 S 25.4 ± 0.1 39.9 ± 1.1 22.7 ± 0.0 34.7 ± 1.2 4.0
NGB105790 Pisum sativum L. chlorotica S 25.5 ± 0.2 38.5 ± 1.9 34.4 ± 3.3 36.0 ± 2.1 4.3
NGB103095 Pisum sativum L. WBH 3095 W 25.7 ± 0.0 30.0 ± 0.7 59.1 ± 2.3 44.3 ± 0.7 4.0
NGB105039 Pisum sativum L. longo-internodium S 25.9 ± 0.1 41.3 ± 0.7 27.6 ± 0.1 32.8 ± 0.8 4.1
NGB106080 Pisum sativum L. WBH 6080 S 26.0 ± 0.4 40.0 ± 1.2 29.6 ± 1.1 34.0 ± 1.6 4.2
NGB105345 Pisum sativum L. Variomicromaculata S 26.1 ± 0.5 38.8 ± 0.4 24.7 ± 2.0 35.1 ± 0.9 3.9
NGB103800 Pisum sativum L. WBH 3800 W 26.3 ± 0.1 33.7 ± 0.9 29.8 ± 0.8 40.0 ± 1.0 4.4
NGB100756 Pisum sativum L. WBH 756 W 26.3 ± 1.2 28.4 ± 0.7 73.3 ± 0.7 45.3 ± 1.9 4.2
NGB106110 Pisum sativum L. Desynaptic S 26.4 ± 0.1 39.3 ± 0.1 27.1 ± 0.6 34.3 ± 0.2 4.2
NGB106006 Pisum sativum L. Desynaptic; 

Homozygous
S 26.4 ± 0.1 39.5 ± 0.7 26.7 ± 0.6 34.1 ± 0.8 3.9

NGB103761 Pisum sativum L. WBH 3761 W 27.3 ± 0.5 28.2 ± 0.8 28.5 ± 1.1 44.5 ± 1.3 3.7
NGB105048 Pisum sativum L. Chlorotica S 27.8 ± 0.5 39.5 ± 0.8 33.3 ± 1.1 32.7 ± 1.3 4.6
NGB105447 Pisum sativum L. Xantha W 29.2 ± 0.6 33.2 ± 0.5 23.7 ± 1.9 37.6 ± 1.1 3.7
NGB100464 Pisum sativum L. subsp. 

sativum
Apollo II W 17.8 ± 0.3 31.7 ± 0.6 62.4 ± 9.9 50.5 ± 0.9 4.2

NGB101463 Pisum sativum L. subsp. 
sativum

Sigyn W 22.9 ± 0.2 28.9 ± 0.4 69.4 ± 0.4 48.2 ± 0.6 4.4

NGB103867 Pisum sativum L. subsp. 
sativum

N/A S 22.5 ± 0.2 44.9 ± 0.4 29.3 ± 1.4 32.6 ± 0.6 4.0

NGB100657 Pisum sativum L. subsp. 
sativum

Balder W 24.6 ± 0.8 28.1 ± 0.1 64.3 ± 0.8 47.3 ± 0.9 4.4

NGB102764 Pisum sativum L. subsp. 
sativum

Olympia W 24.9 ± 0.2 30.2 ± 0.1 60.2 ± 4.5 44.9 ± 0.3 3.7

NGB102663 Pisum sativum L. subsp. 
sativum

WBH 2663 W 29.6 ± 0.5 22.5 ± 1.1 72.3 ± 6.0 47.9 ± 1.6 4.5

NGB102052 Pisum sativum L. subsp. 
sativum var. arvense (L.) 
Poir.

WBH 2052 S 21.7 ± 1.0 48.1 ± 2.1 18.0 ± 0.8 30.2 ± 3.1 4.6

NGB103371 Pisum sativum L. subsp. 
sativum var. arvense (L.) 
Poir.

Fregero S 22.0 ± 0.6 40.4 ± 0.1 32.4 ± 2.5 37.6 ± 0.7 4.6

NGB101596 Pisum sativum L. subsp. 
sativum var. arvense (L.) 
Poir.

WBH 1596 S 24.4 ± 0.1 39.4 ± 0.6 21.8 ± 0.6 36.2 ± 0.7 4.3

N/A: Not available.
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amylose and amylopectin ratios, while other starch biosynthesis en-
zymes and environmental conditions further modulate starch composi-
tion. Beyond starch synthesis, differences in sucrose accumulation and 
osmotic pressure affect seed structure, with some accessions retaining 
more water, leading to greater shrinkage upon drying and a wrinkled 
appearance (Cheng et al., 2024; Moreau et al., 2022). Notably, not all 
wrinkled accessions had higher amylose content compared to smooth 
accessions. For instance, the wrinkled accession NGB103800 had lower 
amylose content than NGB101535, which has smooth seeds. While the 
wrinkled phenotype in peas is most commonly attributed to the rugosus 
(rr) mutation, other factors can also contribute. Mutations in other 
starch-related enzymes, modifier genes, or complex epistatic in-
teractions can influence starch biosynthesis and lead to a wrinkled 
appearance (Daba et al., 2024). Additionally, environmental factors 
such as water stress or temperature fluctuations during seed develop-
ment can affect moisture retention and starch structure, contributing to 
variability in wrinkling (Rayner et al., 2017). Therefore, the lower 
amylose content observed in NGB103800, despite its wrinkled pheno-
type, could be influenced by these additional genetic and environmental 
factors, particularly given its landrace origin, which is associated with a 
more diverse genetic background.

The correlation analysis between image features and chemical 
compositions across the 51 pea accessions is presented in Fig. 6. TKW 
showed negligible correlations with protein content, total starch, 
amylose content, and other components, suggesting that TKW primarily 
reflects seed size and dry matter rather than compositional traits. 
Therefore, compositional differences among accessions are not deter-
mined by TKW. Previous research has shown that the correlation 

between protein and starch content is not consistent, with studies 
reporting both negative correlations and no significant relationships 
(Daba & Morris, 2022). Analysis of the 51 pea accessions in this study 
revealed a strong negative correlation between starch content and 
amylose content (coefficient: − 0.72) as well as other components (co-
efficient: − 0.87), but no significant correlation with protein content. 
This suggests the possibility of selecting pea accessions with high levels 
of both protein and starch, as exemplified by accessions such as 
NGB105048 and NGB106006. Additionally, amylose content showed a 
positive correlation with other components (coefficient: 0.73) but no 
correlation with protein content. Dueholm et al. (2024) analysed 19 

Fig. 4. A: Principal Component Analysis (PCA) plot showing the distribution of the 51 selected pea accessions (black dots) within the total dataset of 1942 accessions 
(green dots). The arrows indicate the contributions of key variables (Protein content, Perimeter, TKW) to the principal components. B: Image album showcasing the 
phenotypic diversity among the 51 selected pea accessions. Photos provided by NordGen. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 5. Distribution histograms of the selected 51 pea accessions on the four selection criteria.

Fig. 6. Heatmap of correlation between image features and chemical compo-
sitions across 51 pea accessions.
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smooth and 5 wrinkled pea accessions and found no correlation between 
amylose and protein content. However, when the 5 wrinkled accessions 
were excluded, a strong negative correlation (− 0.7) was observed. This 
shift indicates that phenotypic classification (smooth vs. wrinkled) can 
markedly influence observed compositional relationships. Considering 
the broad variation among the 51 genetically diverse pea accessions 
analysed in this study, the results suggest that correlations between 
starch, protein, and other traits are context-dependent and may be 
influenced by multiple factors, including genetic background, seed 
phenotype, and environmental conditions.

Interestingly, solidity exhibits a strong negative correlation with 
amylose content (coefficient: − 0.7) and positively correlated with starch 
content (coefficient: 0.73). Roundness and eccentricity also showed 
correlations with amylose and starch content, though their coefficients 
were lower than those of solidity. In contrast, neither seed size (areas, 
perimeter, major length, and minor length) nor colour (RGB values) 
demonstrated strong correlations with the studied compounds. In sum-
mary, solidity is a geometric feature capable of characterising seed 
wrinkling, as it showed strong correlations with total starch, amylose 
content, and other components. However, the predictive power of other 
image features for protein content was limited. These findings suggest 
that geometric features extracted from images are more indicative of 
carbohydrate-related traits in peas.

3.5. Comparative starch analysis via WAXS

Starch played a critical role in determining the textural and func-
tional properties of food ingredients. WAXS is a technology capable of 
revealing structural information with minimal sample volume. It was 
used to investigate the crystalline structure of starch in all pea acces-
sions. The X-ray scattering patterns revealed prominent peaks at 2θ 
15.0◦, 18◦, 20.2◦, and 22.7◦, characteristic of the A-type crystalline 
polymorph commonly found in starches. Smooth pea accessions 
exhibited sharper and more defined peaks, indicating higher starch 
crystallinity, while wrinkled pea accessions showed broader and less 
intense peaks, suggesting reduced crystallinity and a more amorphous 

structure (AL-Ansi et al., 2021). These differences were further quanti-
fied, with smooth peas showing an average crystallinity of 12.9 % and 
wrinkled peas 12.1 %, a statistically significant difference (P < 0.05; 
Fig. 7). Both values were lower than the previously reported ranges of 
23.8–31.3 % for smooth peas and 19.2–20.8 % for wrinkled peas (Cheng 
et al., 2024; Shi et al., 2023), likely due to differences in genetic back-
ground, limited sample size, and variations in the calculation software 
and methods applied.

The lower crystallinity observed in wrinkled peas was consistent 
with their higher amylose content, as amylose inhibited the formation of 
tightly packed crystalline amylopectin double helices (Shi et al., 2023). 
These structural differences were likely to influence functional proper-
ties such as water/oil absorption, gelatinization, and nutritional profiles, 
attributes that were critical for the development of plant-based food 
products (Ren et al., 2021). Grouping information of features with large 
differences is displayed in Fig. 7, further illustrating the structural dis-
tinctions between smooth and wrinkled pea accessions.

3.6. Comparative protein analysis via LC-MS/MS

The protein subunit profiles of 51 pea accessions were characterised 
by LC-MS/MS analysis. A total of 1161 proteins (see Appendix) were 
detected across all samples. To reduce the complexity of the protein 
identification because of poor annotation of the pea protein database, 
the top 350 protein hits were aligned, and sequences with >98 % sim-
ilarity were clustered, retaining 145 unique sequences with the highest 
annotation levels (see Appendix). PCA was performed to visualise the 
variation in these 145 protein profiles across the 51 pea accessions. PC1 
accounted for 52.73 % of the variance, while PC2 explained 18.12 %. 
The loading plot revealed that legumin (A2, J, B), vicilin, and convicilin 
contributed significantly to the variation among accessions (Fig. 8. A). 
The variation in the PC1 direction is primarily driven by legumin A2 and 
the legumin J isoform (A0A9D4W585), whereas other isoforms of 
legumin J (P05692) and (A0A9D5A4B1) are located much closer to the 
centre. Illustrating a larger variation of legumin J isoform 
(A0A9D4W585) across the 51 pea accessions compared with the two 

Fig. 7. WAXS patterns show the grouping information, differentiating 36 smooth pea accessions (left) and 15 wrinkled pea accessions (right). The overall scattering 
pattern and the peak at 2θ 15.0◦ are good indicators of distinguishing smooth from wrinkled peas.
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other legumin J isoforms (P05692) and (A0A9D5A4B1). The variation in 
the PC2 direction is mainly dominated by the variation of different types 
of vicilin indicating that there is a natural variation in vicilin types like 
vicilin, con-vicilin, pro-vicilin, and vicilin 47 k that is to some extent 
independent of the variation of legumin A2 and legumin J. The PCA 
score plot (Fig. 8. B) illustrated a relatively equal distribution of the 51 
accessions along the PC1 and PC2 directions, with no significant 

grouping. Colouring of the score plot according to amylose content 
indicated a relationship between the variation of amylose content and 
the variation in the PC1 direction, and it was found that vicilin content 
was related to amylose content. By combining the loading plot and score 
plot, it was inferred that legumins (A2 and J) prevailed in smooth peas, 
while the different types of vicilins were more prevalent in wrinkled 
ones, which was consistent with the result from Daba et al. (2024). This 

Fig. 8. A: PCA loading plot of protein subunits across 51 pea accessions. B: PCA score plot coloured by amylose content. Wrinkled and smooth accessions are marked 
with triangles and squares, respectively.
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pattern can be explained by the reduced vicilin content in wrinkled peas, 
resulting from increased osmotic stress in the high-sugar environment 
during seed development, which in turn led to the instability of legumin 
mRNA (Daba & Morris, 2022). Compared to the limited variation 
observed across eight cultivars in Vreeke et al. (2023), the 51 pea ac-
cessions analysed in this study exhibited a broader dynamic range in 
globulin subunit composition. Notable differences were found in the 
abundance of vicilin and legumin, and these variations were associated 
with phenotypic traits such as starch composition. This suggested a 
greater protein diversity, likely resulting from the wider genetic back-
ground covered in the current panel. Supporting this, Kreplak et al. 
(2019) annotated 12 legumin and 9 vicilin genes in the pea reference 
genome, revealing a substantial expansion of these storage protein gene 
families. This genomic evidence supports the observed variation in 
legumin and vicilin abundance across accessions, suggesting that dif-
ferences in protein subunit profiles may partly reflect divergence in gene 
copy number or expression. Meanwhile, Rayner et al. (2024) found that 
the removal of vicilin by deletion of the corresponding genes did not 
reduce the protein concentration in mature pea seeds. This suggested 
that protein composition was linked to starch content, potentially 
through shared developmental pathways, while total protein content 
remained independent of starch composition. This observation sup-
ported the hypothesis that protein accumulation mechanisms are regu-
lated separately from carbohydrate metabolism. In addition to globulin 
subunits, 12 proteins were annotated as protease inhibitors. While these 
were detected in many accessions, their abundance was relatively low, 
and their contribution to PCA variation was minimal. Therefore, they 
were not a primary focus in this study, which emphasises storage protein 
composition and functionality.

Legumin and vicilin, also referred to as 11S and 7S globulin fractions, 
respectively, account for approximately 32–77 % of the total protein in 
peas (Gravel et al., 2024). These globulins play a crucial role in deter-
mining protein functionality, including solubility, gelation, and nutri-
tional properties. Previous studies have found that a higher 7S/11S ratio 
generally promotes better gelling properties, however, certain vicilin 
subunits may inhibit gelation (Husband et al., 2024). By mapping pea 
protein compositions alongside other key components such as starch, it 
becomes feasible to manipulate the legumin-to-vicilin and amylose-to- 
amylopectin ratios through careful accession selection. Consequently, 
protein concentrates with desired functional properties can be obtained 
with minimal reliance on intensive fractionation processes.

3.7. ζ-potential

To explore the colloidal stability of pea protein extracts, ζ-potential 
was measured across five pH values for all 51 accessions. The distinct 
patterns observed indicated substantial differences in buffering capac-
ities (see supplementary data). To assess whether these trends corre-
sponded to protein composition, the average isoelectric point (pI) of 
each sample was calculated based on LC-MS/MS subunit profiles 
(Table 1) (Helmick et al., 2021). Moreover, the correlation between 
ζ-potential at different pH and legumin-to-vicilin ratio was weak (e.g., a 
coefficient of − 0.24 at pH 4). This indicates that surface charge 
behaviour is not solely determined by protein sequence composition, 
non-protein components such as phytic acid and polysaccharide com-
plexes may also affect protein solubility (Tanger et al., 2020).

At pH 7, the ζ-potential of proteins from different pea accessions 
ranged from − 11 mV to − 3 mV. The range even exceeded the differences 
caused by various extraction methods applied to a single pea cultivar 
(Tanger et al., 2020), highlighting the importance of leveraging natural 
variation among accessions. However, it remains notably lower than the 
commonly recognised ±30 mV threshold, beyond which colloidal dis-
persions are generally considered stable. The relatively low ζ-potential 
values observed in this study suggested that pea protein dispersions may 
exist in a semi-stable state, where hydrophobic interactions, hydrogen 
bonding, and van der Waals forces could play a more significant role in 

aggregation. The isoelectric points ranged from 3.7 to 4.6 among the 51 
accessions (see Table 1), providing a useful reference for identifying pea 
accessions with ζ-potential trends that remain stable within target pH 
ranges. Such accessions may be more suitable for food processing ap-
plications requiring stable protein dispersions.

4. Conclusions

This study demonstrates the potential of integrating image-based 
phenotyping and minimally refined compositional analysis to charac-
terise and utilise pea germplasm for food applications. By extracting 
geometric and colour features from 1942 pea accessions and selecting a 
representative subset using clustering based on protein, starch, and 
morphology, extensive diversity in both phenotypic and compositional 
traits was revealed. Algorithm-assisted selection expanded the coverage 
of protein and starch content compared to previous reports. Notably, 
solidity emerged as a key morphological marker strongly correlated with 
starch composition, while WAXS confirmed structural differences in 
starch crystallinity that underscore the functional relevance of these 
traits. Moreover, protein and starch contents exhibited negligible 
correlation.

Proteomic analysis identified legumin and vicilin as the primary 
contributors to variation among the 51 pea accessions, with legumin 
predominating in smooth and vicilin in wrinkled accessions. Variations 
in protein subunit composition and other compounds, such as phytic 
acids, also significantly influenced zeta potential and isoelectric points 
under different pH conditions, which formed the basis for selecting ac-
cessions according to their genetic variants.

Future research should focus on refining selection criteria for 
representative accessions based on key compositional traits while 
addressing the constraints of limited seed availability. Advancements in 
non-destructive phenotyping and high-throughput compositional anal-
ysis will be critical for overcoming these constraints and enabling effi-
cient utilisation of genebank diversity. By harnessing natural genetic 
variation, this approach offers a sustainable alternative to conventional 
protein fractionation, reducing the reliance on resource-intensive pro-
cessing methods while expanding the potential of pea-based food 
applications.
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